Review Special Issues

Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions

  • Received: 15 January 2024 Revised: 12 February 2024 Accepted: 20 February 2024 Published: 06 March 2024
  • The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive biopsies for precise grading. As an alternative, computer-assisted methods, particularly deep convolutional neural networks (DCNNs), have gained traction. This research paper explores the recent advancements in DCNNs for glioma grading using brain magnetic resonance images (MRIs) from 2015 to 2023. The study evaluated various DCNN architectures and their performance, revealing remarkable results with models such as hybrid and ensemble based DCNNs achieving accuracy levels of up to 98.91%. However, challenges persisted in the form of limited datasets, lack of external validation, and variations in grading formulations across diverse literature sources. Addressing these challenges through expanding datasets, conducting external validation, and standardizing grading formulations can enhance the performance and reliability of DCNNs in glioma grading, thereby advancing brain tumor classification and extending its applications to other neurological disorders.

    Citation: Sonam Saluja, Munesh Chandra Trivedi, Ashim Saha. Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5250-5282. doi: 10.3934/mbe.2024232

    Related Papers:

  • The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive biopsies for precise grading. As an alternative, computer-assisted methods, particularly deep convolutional neural networks (DCNNs), have gained traction. This research paper explores the recent advancements in DCNNs for glioma grading using brain magnetic resonance images (MRIs) from 2015 to 2023. The study evaluated various DCNN architectures and their performance, revealing remarkable results with models such as hybrid and ensemble based DCNNs achieving accuracy levels of up to 98.91%. However, challenges persisted in the form of limited datasets, lack of external validation, and variations in grading formulations across diverse literature sources. Addressing these challenges through expanding datasets, conducting external validation, and standardizing grading formulations can enhance the performance and reliability of DCNNs in glioma grading, thereby advancing brain tumor classification and extending its applications to other neurological disorders.



    加载中


    [1] M. L. Goodenberger, R. B. Jenkins, Genetics of adult glioma, Cancer Genet., 205 (2012), 613–621. https://doi.org/10.1016/j.cancergen.2012.10.009 doi: 10.1016/j.cancergen.2012.10.009
    [2] D. N. Louis, A. Perry, G. Reifenberger, A. Deimling, D. Figarella-Branger, W. K. Cavenee, et al., The 2016 World Health Organization classification of tumors of the central nervous system: a summary, Acta Neuropathol., 131 (2016), 803–820. https://doi.org/10.1007/s00401-016-1545-1 doi: 10.1007/s00401-016-1545-1
    [3] D. N. Louis, A. Perry, P. Wesseling, D. J. Brat, I. A. Cree, D. Figarella-Branger, et al., The 2021 WHO classification of tumors of the central nervous system: a summary, Neuro-oncology, 23 (2021), 1231–1251.https://doi.org/10.1093/neuonc/noab106 doi: 10.1093/neuonc/noab106
    [4] A. Munshi, Central nervous system tumors: Spotlight on India, South Asian J. Cancer, 5 (2016) 146–147. https://doi.org/10.4103/2278-330x.187588
    [5] F. Zaccagna, J. T. Grist, N. Quartuccio, F. Riemer, F. Fraioli, C. Caracò, Imaging and treatment of brain tumors through molecular targeting: Recent clinical advances, Eur. J. Radiol., 142 (2021), 109842. https://doi.org/10.1016/j.ejrad.2021.109842 doi: 10.1016/j.ejrad.2021.109842
    [6] D. Aquino, A. Gioppo, G. Finocchiaro, M. G. Bruzzone, V. Cuccarini, MRI in glioma immunotherapy: evidence, pitfalls, and perspectives, J. Immunol. Res., 2017 (2017), 5813951. https://doi.org/10.1155/2017/5813951 doi: 10.1155/2017/5813951
    [7] A. Maier, C. Syben, T. Lasser, C. Riess, A gentle introduction to deep learning in medical image processing, Z. fur Med. Phys., 29 (2019), 86–101. https://doi.org/10.1016/j.zemedi.2018.12.003 doi: 10.1016/j.zemedi.2018.12.003
    [8] K. Yasaka, H. Akai, A. Kunimatsu, S. Kiryu, O. Abe, Deep learning with convolutional neural network in radiology, Jpn. J. Radiol., 36 (2018), 257–272. https://doi.org/10.1007/s11604-018-0726-3 doi: 10.1007/s11604-018-0726-3
    [9] M. I. Razzak, S. Naz, A. Zaib, Deep learning for medical image processing: Overview, challenges and the future, Classif. BioApps: Autom. Decis. Making, 26 (2018), 323–350. https://doi.org/10.1007/978-3-319-65981-7_12
    [10] N. Tajbakhsh. J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, et al., Convolutional neural networks for medical image analysis: Full training or fine tuning?, IEEE Trans. Med. Imaging, 35 (2016), 1299–1312. https://doi.org/10.1109/tmi.2016.2535302 doi: 10.1109/tmi.2016.2535302
    [11] W. Jin, M. Fatehi, K. Abhishek, M. Mallya, B. Toyota, G. Hamarneh, Artificial intelligence in glioma imaging: Challenges and advances, J. Neural Eng., 17 (2020), 021002. https://doi.org/10.1088/1741-2552/ab8131 doi: 10.1088/1741-2552/ab8131
    [12] J. H. Park, N. Jung, S. J. Kang, H. S. Kim, E. Kim, H. J. Lee, et al., Survival and prognosis of patients with pilocytic astrocytoma: a single-center study, Brain Tumor Res. Treat., 7 (2019), 92–97. https://doi.org/10.14791/btrt.2019.7 doi: 10.14791/btrt.2019.7
    [13] S. G. Berntsson, R. T. Merrell, E. S. Amirian, G. N. Armstrong, D. Lachance, A. Smits, et al., Glioma-related seizures in relation to histopathological subtypes: A report from the glioma international case-control study, J. Neurol., 265 (2018), 1432–1442. https://doi.org/10.1007/s00415-018-8857-0 doi: 10.1007/s00415-018-8857-0
    [14] W. Taal, J. E. Bromberg, M. J. V. den Bent, Chemotherapy in glioma, CNS Oncol., 4 (2015), 179–192. https://doi.org/10.2217/cns.15.2 doi: 10.2217/cns.15.2
    [15] M. Glas, C. Happold, J. Rieger, D. Wiewrodt, O. Bähr, J. P. Steinbach, et al., Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide, J. Clin. Oncol., 27 (2009), 1257–1261. https://doi.org/10.1200/jco.2008.19.2195 doi: 10.1200/jco.2008.19.2195
    [16] N. Wijethilake, D. Meedeniya, C. Chitraranjan, I. Perera, M. Islam, H. Ren, Glioma survival analysis empowered with data engineering—a survey, IEEE Access, 9 (2021), 43168–43191. https://doi.org/0.1109/access.2021.3065965
    [17] Q. T. Ostrom, L. Bauchet, F. G. Davis, I. Deltour, J. L. Fisher, C. E. Langer, et al., The epidemiology of glioma in adults: A "state of the science" review, Neuro-Oncology, 16 (2014), 896–913. https://doi.org/10.1093/neuonc/nou087 doi: 10.1093/neuonc/nou087
    [18] D. Salles, G. Laviola, A. C. de M. Malinverni, J. N. Stávale, Pilocytic astrocytoma: A review of general, clinical, and molecular characteristics, J. Child Neurol., 35 (2020), 852–858. https://doi.org/10.1177/0883073820937225
    [19] S. Florian. S. Șuşman, Diffuse astrocytoma and oligodendroglioma: An integrated diagnosis and management, in Glioma-Contemporary Diagnostic and Therapeutic, IntechOpen, 2019. https://doi.org/10.5772/intechopen.76205
    [20] C. Balañá, M. Alonso, A. Hernandez, P. Perez-Segura, E. Pineda, A. Ramos, et al., SEOM clinical guidelines for anaplastic gliomas, Clin. Transl. Oncol., 20 (2017), 16–21. https://doi.org/10.1007/s12094-017-1762-7 doi: 10.1007/s12094-017-1762-7
    [21] O. G. Taylor, J. S. Brzozowski, K. A. Skelding, Glioblastoma multiforme: An overview of emerging therapeutic targets, Front. Oncol., 9 (2019) 963. https://doi.org/10.3389/fonc.2019.00963
    [22] M. K. Abd-Ellah, A. I. Awad, A. A. Khalaf, H. F. Hamed, A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned, Magn. Reson. Imaging, 61 (2019), 300–318. https://doi.org/10.1016/j.mri.2019.05.028
    [23] A. Lasocki, A. Tsui, M. A. Tacey, K. J. Drummond, K. M. Field, F. Gaillard, et al., MRI grading versus histology: Predicting survival of World Health Organization Grade II-IV astrocytomas, AJNR Am. J. Neuroradiol., 36 (2015), 77–83. https://doi.org/10.3174/ajnr.a4077 doi: 10.3174/ajnr.a4077
    [24] G. Mohan, M. Subashini, MRI based medical image analysis: Survey on brain tumor grade classification, Biomed. Signal Process. Control., 39 (2018), 139–161. https://doi.org/10.1016/j.bspc.2017.07.007 doi: 10.1016/j.bspc.2017.07.007
    [25] A. Vamvakas, S. C. Williams, K. Theodorou, E. Kapsalaki, K. Fountas, C. Kappas, et al., Imaging biomarker analysis of advanced multiparametric MRI for glioma grading, Phys. Medica, 60 (2019), 188–198. https://doi.org/10.1016/j.ejmp.2019.03.014 doi: 10.1016/j.ejmp.2019.03.014
    [26] M. Rizwan, A. Shabbir, A. R. Javed, M. Shabbir, T. Baker, D. A-J. Obe, Brain tumor and glioma grade classification using Gaussian convolutional neural network, IEEE Access, 10 (2022), 29731–29740. https://doi.org/10.1109/access.2022.3153108 doi: 10.1109/access.2022.3153108
    [27] J. E. Villanueva-Meyer, M. C. Mabray, S. Cha, Current clinical brain tumor imaging, Neurosurgery, 81 (2017), 397–415. https://doi.org/10.1093/neuros/nyx103 doi: 10.1093/neuros/nyx103
    [28] CIP, The Cancer Genome Atlas (TCGA), 2012. Available from: http://cancergenome.nih.gov.
    [29] The Cancer Genome Atlas Glioblastoma Multiforme Collection, https://www.cancerimagingarchive.net/collection/tcga-gbm/
    [30] L. Scarpace, T. Mikkelsen, S. Cha, S. Rao, S, Tekchandani, D. Gutman, et al., The Cancer Genome Atlas Glioblastoma Multiforme Collection (TCGA-GBM) (Version 5)[Data set], Cancer Imaging Arch., 2016. https://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9
    [31] The Cancer Genome Atlas Glioblastoma Multiforme Collection, https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
    [32] N. Pedano, A. E. Flanders, L. Scarpace, T. Mikkelsen, J. M. Eschbacher, B. Hermes, et al., The Cancer Genome Atlas Low Grade Glioma Collection (TCGA-LGG) (Version 3)[Dataset], Cancer Imaging Arch., 2016. https://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK
    [33] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, et al., The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository, J. Digit. Imaging, 26 (2013), 1045–1057. https://doi.org/10.1007/s10278-013-9622-7. doi: 10.1007/s10278-013-9622-7
    [34] REMBRANDT- The Cancer Imaging Archive (TCIA) Public Access, https://wiki.cancerimagingarchive.net/display/Public/REMBRANDT.
    [35] L. Scarpace, A. E. Flanders, R. Jain, T. Mikkelsen, D. W. Andrews, Data from REMBRANDT[Data set], Cancer Imaging Arch., 2019. https://doi.org/10.7937/K9/TCIA.2015.588OZUZB
    [36] MICCAI BRATS- The Multimodal Brain Tumor Segmentation, http://braintumorsegmentation.org/
    [37] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, et al., Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features, Sci. Data, 4 (2017). https://doi.org/10.1038/sdata.2017.117
    [38] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al., The multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, 34 (2015), 1993–2024. https://doi.org/10.1109/tmi.2014.2377694 doi: 10.1109/tmi.2014.2377694
    [39] ClinicalTrials.gov., https://clinicaltrials.gov/, Accessed: Apr. 26, 2022.
    [40] Radiopaedia.org, the Wiki-based Collaborative Radiology Resource, https://radiopaedia.org/.Accessed: Jun. 26, 2022.
    [41] Q. D. Buchlak, N. Esmaili, J. C. Leveque, C. Bennett, F. Farrokhi, M. Piccardi, Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review, J. Clin. Neurosci., 89 (2021), 177–198. https://doi.org/10.1016/j.jocn.2021.04.043 doi: 10.1016/j.jocn.2021.04.043
    [42] J. Amin, M. Sharif, A. Haldorai, M. Yasmin, R. S. Nayak, Brain tumor detection and classification using machine learning: A comprehensive survey, Complex Intell. Syst., 8 (2022), 3161–3183. https://doi.org/10.1007/s40747-021-00563-y doi: 10.1007/s40747-021-00563-y
    [43] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1038/nature14539 doi: 10.1038/nature14539
    [44] E. Lotan, R. Jain, N. Razavian, G. M. Fatterpekar, Y. W. Lui, State of the art: machine learning applications in glioma imaging, Am. J. Roentgenol., 212 (2019), 26–37. https://doi.org/10.2214/ajr.18.20218 doi: 10.2214/ajr.18.20218
    [45] D. Shen, G. Wu, H. I. Suk, Deep learning in medical image analysis, Annu. Rev. Biomed. Eng., 19 (2017), 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442 doi: 10.1146/annurev-bioeng-071516-044442
    [46] R. Yamashita, M. Nishio, R. K. G. Do, K. Togashi, Convolutional neural networks: An overview and application in radiology, Insights Imaging, 9 (2018), 611–629. https://doi.org/10.1007/s13244-018-0639-9 doi: 10.1007/s13244-018-0639-9
    [47] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, et al., Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions, J. Big Data, 8 (2021), 53. https://doi.org/10.1186/s40537-021-00444-8 doi: 10.1186/s40537-021-00444-8
    [48] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, et al., Backpropagation applied to handwritten zip code recognition, Neural Comput., 1 (1989), 541–551. https://doi.org/10.1162/neco.1989.1.4.541 doi: 10.1162/neco.1989.1.4.541
    [49] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, preprint, arXiv: 1207.0580.
    [50] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, preprint, arXiv: 1311.2901.
    [51] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556.
    [52] C. Szegedy, W. Liu, Y. Jia, P Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 1–9. https://doi.org/10.1109/cvpr.2015.7298594
    [53] C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, Inception-ResNet and the impact of residual, preprint, arXiv: 1602.07261.
    [54] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, preprint, arXiv: 1512.03385.
    [55] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 5987–5995. https://doi.org/10.1109/cvpr.2017.634
    [56] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al., Mobilenets: Efficient convolutional neural networks for mobile vision applications, preprint, arXiv: 1704.04861.
    [57] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable architectures for scalable image recognition, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. https://doi.org/10.1109/cvpr.2018.00907
    [58] M. Tan, Q. V. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, in Proceedings of the 36th International Conference on Machine Learning, 97 (2019), 6105–6114. http://proceedings.mlr.press/v97/tan19a.html
    [59] A. Brock, S. De, S. L. Smith, K. Simonyan, High-performance large-scale image recognition without normalization, preprint, arXiv: 2102.06171
    [60] T. Ridnik, H. Lawen, A. Noy, E. Ben, B. G. Sharir, I. Friedman, Tresnet: High performance gpu-dedicated architecture, in IEEE Winter Conference on Applications of Computer Vision (WACV), 2021. https://doi.org/10.1109/wacv48630.2021.00144
    [61] R. K. Srivastava, K. Gref, J. Schmidhuber, Highway networks, preprint, arXiv: 1505.00387.
    [62] G. Huang, Z. Liu, L. Maaten, K. Q. Weinberger, Densely connected convolutional networks, preprint, arXiv: 1608.06993.
    [63] R. Hao, K. Namdar, L. Liu, F. Khalvati, A transfer learning–based active learning framework for brain tumor classification, Front. Artif. Intell., 4 (2021), 635766. https://doi.org/10.3389/frai.2021.635766 doi: 10.3389/frai.2021.635766
    [64] K. Muhammad, S. Khan, J. D. Ser, V. H. C. de Albuquerque, Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 507–522. https://doi.org/10.1109/tnnls.2020.2995800 doi: 10.1109/tnnls.2020.2995800
    [65] R. Miotto, F. Wang, S. Wang, X. Jiang, J. T. Tudley, Deep learning for healthcare: review, opportunities and challenges, Brief. Bioinf., 19 (2018), 1236–1246. https://doi.org/10.1093/bib/bbx044 doi: 10.1093/bib/bbx044
    [66] A. H. Morad, H. M. Al-Dabbas, Classification of brain tumor area for MRI images, in Journal of Physics: Conference Series, 1660 (2020). https://doi.org/10.1088/1742-6596/1660/1/012059
    [67] Z. Huang, H. Xu, S. Su, T. Wang, Y. Luo, X. Zhao, et al., A computer-aided diagnosis system for brain magnetic resonance imaging images using a novel differential feature neural network, Comput. Biol. Med., 121 (2020), 103818. https://doi.org/10.1016/j.compbiomed.2020.103818 doi: 10.1016/j.compbiomed.2020.103818
    [68] X. Dong, Z. Yu, W. Cao, Y. Shi, Q. Ma, A survey on ensemble learning, Front. Comput. Sci., 14 (2019), 241–258. https://doi.org/10.1007/s11704-019-8208-z doi: 10.1007/s11704-019-8208-z
    [69] M. Ganaie, M. Hu, A. K. Malik, M. Tanveer, P. N. Suganthan, Ensemble deep learning: A review, Eng. Appl. Artif. Intell., 115 (2022), 105151. https://doi.org/10.1016/j.engappai.2022.105151 doi: 10.1016/j.engappai.2022.105151
    [70] Y. Yang, H. Lv, N. Chen, A Survey on ensemble learning under the era of deep learning, Artif. Intell. Rev., 56 (2022), 5545–5589. https://doi.org/10.1007/s10462-022-10283-5 doi: 10.1007/s10462-022-10283-5
    [71] A. Tharwat, Classification assessment methods, Appl. Comput. Inf., 17 (2020), 168–192. https://doi.org/10.1016/j.aci.2018.08.003 doi: 10.1016/j.aci.2018.08.003
    [72] M. Nazi, S. Shakil, K. Khurshid, Role of deep learning in brain tumor detection and classification (2015 to 2020): A review, Comput. Med. Imaging Graph, 91 (2021). https://doi.org/10.1016/j.compmedimag.2021.101940
    [73] P. Bulla, L. Anantha, S. Peram, Deep neural networks with transfer learning model for brain tumors classification, Trait. Du Signal, 37 (2020), 593–601. https://doi.org/10.18280/ts.370407 doi: 10.18280/ts.370407
    [74] M. U. Rehman, S. Cho, J. H. Kim, K. T. Chong, Bu-net: Brain tumor segmentation using modified u-net architecture, Electronics, 9 (2020), 2203. https://doi.org/10.3390/electronics9122203 doi: 10.3390/electronics9122203
    [75] M. U. Rehman, S. Cho, J. H. Kim, K. T. Chong, Brainseg-net: Brain tumor mr image segmentation via enhanced encoder–decoder network, Diagnostics, 11 (2021), 169. https://doi.org/10.3390/diagnostics11020169 doi: 10.3390/diagnostics11020169
    [76] M. U. Rehman, J. Ryu, I. F. Nizami, K. T. Chong, RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial frames, Comput. Biol. Med., 152 (2023), 106426. https://doi.org/10.1016/j.compbiomed.2022.106426 doi: 10.1016/j.compbiomed.2022.106426
    [77] S. Y. Lin, C. L. Lin, Brain tumor segmentation using U-Net in conjunction with EfficientNet, PeerJ Comput. Sci., 10 (2024). https://doi.org/10.7717/peerj-cs.1754
    [78] P. Wang, Y. Liu, Z. Zhou, Supraspinatus extraction from MRI based on attention-dense spatial pyramid UNet network, J. Orthop. Surg. Res., 19 (2024). https://doi.org/10.1186/s13018-023-04509-7
    [79] H. Yin, Y. Wang, J. Wen, G. Wang, B. Lin, W. Yang, et al., DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation, Biomed. Signal Process. Control., 90 (2024), 105818. https://doi.org/10.1016/j.bspc.2023.105818 doi: 10.1016/j.bspc.2023.105818
    [80] S. Banerjee, S. Mitra, F. Masulli, S. Rovetta, Deep radiomics for brain tumor detection and classification from multi-sequence MRI, preprint, arXiv: 1903.09240
    [81] K. V. Muneer, V. R. Rajendran, P. K. Joseph, Glioma tumor grade identification using artificial intelligent techniques, J. Med. Syst., 43 (2019). https://doi.org/10.1007/s10916-019-1228-2
    [82] C. Ge, I. Y. H. Gu, A. S. Jakola, J. Yang, Deep learning and multi-sensor fusion for glioma classification using multistream 2D convolutional networks, in 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018. https://doi.org/10.1109/embc.2018.8513556
    [83] Y. Yang, L. F. Yan, X. Zhang, Y. Han, H. Y. Nan, Y. C. Hu, et al., Glioma grading on conventional MR images: a deep learning study with transfer learning, Front. Neurosci., 12 (2018), 804. https://doi.org/10.3389/fnins.2018.00804 doi: 10.3389/fnins.2018.00804
    [84] S. Gutta, J. Acharya, M. Shiroishi, D. Hwang, K. Nayak, Improved glioma grading using deep convolutional neural networks, Am. J. Neuroradiol., 42 (2020), 233–239. https://doi.org/10.3174/ajnr.a6882 doi: 10.3174/ajnr.a6882
    [85] Z. Lu, Y. Bai, Y. Chen, C. Su, S. Lu, T. Zhan, et al., The classification of gliomas based on a Pyramid dilated convolution resnet model, Pattern Recognit. Lett., 133 (2020), 173–179. https://doi.org/10.1016/j.patrec.2020.03.007 doi: 10.1016/j.patrec.2020.03.007
    [86] H. Mzoughi, I. Njeh, A. Wali, M. B. Slima, A. B. Hamida, C. Mhiri, et al., Deep multi-scale 3D Convolutional Neural Network (CNN) for MRI Gliomas brain tumor classification, J. Digit. Imaging, 33 (2020), 903–915. https://doi.org/10.1007/s10278-020-00347-9 doi: 10.1007/s10278-020-00347-9
    [87] Y. Zhuge, H. Ning, P. Mathen, J. Y. Cheng, A. V. Krauze, K. Camphausen, et al., Automated glioma grading on conventional MRI images using deep convolutional neural networks, Med. Phys., 47 (2020), 3044–3053. https://doi.org/10.1002/mp.14168 doi: 10.1002/mp.14168
    [88] S. Khawaldeh, U. Pervaiz, A. Rafiq, R. Alkhawaldeh, Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks, Appl. Sci., 8 (2017), 27. https://doi.org/10.3390/app8010027
    [89] C. Ge, I. Y. H. Gu, A. S. Jakola, J. Yang, Deep semi-supervised learning for brain tumor classification, BMC Med. Imaging, 20 (2020). https://doi.org/10.1186/s12880-020-00485-0
    [90] S. Liang, R. Zhang, D. Liang, T. Song, T. Ai, C. Xia, et al., Multimodal 3D DenseNet for IDH genotype prediction in gliomas, Genes, 9 (2018), 382. https://doi.org/10.3390/genes9080382 doi: 10.3390/genes9080382
    [91] C. Ge, Q. Qu, I. Y. H. Gu, A. Jakola, 3D multi-scale convolutional networks for glioma grading using MR images, in 25th IEEE International Conference on Image Processing (ICIP), 2018. https://doi.org/10.1109/icip.2018.8451682
    [92] M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, S. W. Baik, Multi-grade brain tumor classification using deep CNN with extensive data augmentation, J. Comput. Sci., 30 (2018), 174–182. https://doi.org/10.1016/j.jocs.2018.12.003 doi: 10.1016/j.jocs.2018.12.003
    [93] H. Özcan, B. G. Emiroglu, H. Sabuncuoğlu, S. Özdoğan, A. Soyer, T. Saygı, A comparative study for glioma classification using deep convolutional neural networks, Math. Biosci. Eng., 18 (2021), 1550–1572. https://doi.org/10.3934/mbe.2021080 doi: 10.3934/mbe.2021080
    [94] H. E. Hamdaoui, A. Benfares, S. Boujraf, N. E. H. Chaoui, B. Alami, M. Maaroufi, et al., High precision brain tumor classification model based on deep transfer learning and stacking concepts, Indones. J. Electr., 24 (2021), 167–177. https://doi.org/10.11591/ijeecs.v24.i1.pp167-177 doi: 10.11591/ijeecs.v24.i1.pp167-177
    [95] M. Decuyper, S. Bonte, K. Deblaere, R. V. Holen, Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma, Comput. Med. Imaging Graph, 88 (2021), 101831. https://doi.org/10.1016/j.compmedimag.2020.101831
    [96] C. M. Lo, Y. C. Chen, R. C. Weng, K. L. C. Hsieh, Intelligent glioma grading based on deep transfer learning of MRI radiomic features, Appl. Sci., 9 (2019), 4926. https://doi.org/10.3390/app9224926 doi: 10.3390/app9224926
    [97] G. S. Tandel, A. Tiwari, O. Kakde, Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification, Comput. Biol. Med., 135 (2021). https://doi.org/10.1016/j.compbiomed.2021.104564
    [98] M. A. Naser, M. J. Deen, Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images, Comput. Biol. Med., 121 (2020). https://doi.org/10.1016/j.compbiomed.2020.103758
    [99] W. Ayadi, W. Elhamzi, I. Charfi, M. Atri, Deep CNN for brain tumor classification, Neural Process. Lett., 53 (2021), 671–700. https://doi.org/10.1007/s11063-020-10398-2 doi: 10.1007/s11063-020-10398-2
    [100] Y. Xie, F. Zaccagna, L. Rundo, C. Testa, R. Agati, R. Lodi, et al., Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives, Diagnostics, 12 (2022), 1850. https://doi.org/10.3390/diagnostics12081850 doi: 10.3390/diagnostics12081850
    [101] P. C. Tripathi, S. Bag, A computer-aided grading of glioma tumor using deep residual networks fusion, Comput. Methods Programs Biomed., 215 (2022). https://doi.org/10.1016/j.cmpb.2021.106597
    [102] S. Gull, S. Akbar, S. M. Naqi, A deep learning approach for multi-stage classification of brain tumor through magnetic resonance images, Int. J. Imaging Syst. Technol., 33 (2023), 1745–1766. https://doi.org/10.1002/ima.22897 doi: 10.1002/ima.22897
    [103] G. S. Tandel, A. Tiwari, O. G. Kakde, N. Gupta, L. Saba, J. S. Suri, Role of ensemble deep learning for brain tumor classification in multiple magnetic resonance imaging sequence data, Diagnostics, 13 (2023), 481. https://doi.org/10.3390/diagnostics13030481 doi: 10.3390/diagnostics13030481
    [104] S. V. Rubio, M. T. García-Ordás, O. García-Olalla Olivera, H. Alaiz-Moretón, M. I. González-Alonso, J. A. Benítez-Andrades, Survival and grade of the glioma prediction using transfer learning, PeerJ Comput. Sci., 9 (2023), 1723. https://doi.org/10.7717/peerj-cs.1723 doi: 10.7717/peerj-cs.1723
    [105] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, et al., Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions, J. Big Data, 8 (2021). https://doi.org/10.1186/s40537-021-00444-8
    [106] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, ] Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15 (2014), 1929–1958. http://jmlr.org/papers/v15/srivastava14a.html
    [107] R. C. Moore, J. DeNero, L1 and L2 regularization for multiclass hinge loss models, in Proceedings of the Symposium on Machine Learning in Speech and Natural Language Processing, 2011.
    [108] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in Proceedings of the 32nd International Conference on Machine Learning, (2015), 448–456. https://doi.org/10.48550/arXiv.1502.03167.
    [109] Z. Khazaee, M. Langarizadeh, M. E. S. Ahmadabadi, Developing an artificial intelligence model for tumor grading and classification, based on mri sequences of human brain gliomas, Int. J. Cancer Manage., 15 (2022). https://doi.org/10.5812/ijcm.120638
    [110] D. R. Sarvamangala, R. V. Kulkarni, Convolutional neural networks in medical image understanding: a survey, Evol. Intell., 15 (2022), 1–22. https://doi.org/10.1007/s12065-020-00540-3 doi: 10.1007/s12065-020-00540-3
    [111] M. Versaci, G. Angiulli, F. LaForesta, F. Laganà, Palumbo, A. Annunziata, Intuitionistic fuzzy divergence for evaluating the mechanical stress state of steel plates subject to bi-axial loads, Integr. Comput. Aided Eng., (2024), 1–17. https://doi.org/10.3233/ica-230730
    [112] W. Luo, D. Phung, T. Tran, S. Gupta, S. Rana, C. Karmakar, et al., Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view, J. Med. Internet Res., 18 (2016). https://doi.org/10.2196/jmir.5870.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1244) PDF downloads(161) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog