Citation: Jinhua Zhou, Shan Jia, Jinbao Chen, Meng Chen. Motion and trajectory planning modeling for mobile landing mechanism systems based on improved genetic algorithm[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 231-252. doi: 10.3934/mbe.2021012
[1] | T. Okada, S. Sasaki, T. Sugihara, K. Saiki, H. Akiyama, M. Ohtake, et al., Lander and rover exploration on the lunar surface: A study for SELENE-B mission, Adv. Space Res., 37 (2006), 88-92. doi: 10.1016/j.asr.2005.05.097 |
[2] | R. J. Williams, E. K. Gibson, The origin and stability of lunar goethite, hematite and magnetite, Earth Planet. Sci. Lett., 17 (1972), 84-88. doi: 10.1016/0012-821X(72)90261-0 |
[3] | T. E. Ford, C. Eng, A. F. R. Ae. S, The Apollo lunar module: a description of the construction of the lunar module used to make the first manned landing of a space vehicle on another planet, Aircraft Eng. Aerosp. Technol., 41 (1969), 26-28. |
[4] | R. Parkinson, The use of system models in the Euro Moon spacecraft design, Acta Astronaut., 44 (1999), 437-443. doi: 10.1016/S0094-5765(99)00088-0 |
[5] | M. Benton, B. Donahue, D. Bienhoff, G. Caplin, D. Smith, K. Reiley, Configuration Options to Maximize Lunar Surface Reuse of Altair Lander Structure and Systems, AIAA SPACE 2009 Conference & Exposition, 2006. |
[6] | M. A. Siegler, S. E. Smrekar, M. Grott, S. Piqueux, N. Mueller, J. Pierre, et al., The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment, Space Sci. Rev., 211 (2017), 1-17. doi: 10.1007/s11214-017-0414-0 |
[7] | P. J. Ye, Z. Z. Sun, H. Zhang, F. Li, An overview of the mission and technical characteristics of change'4 lunar probe, Sci. China Technol. Sci., 60 (2017), 658-667. doi: 10.1007/s11431-016-9034-6 |
[8] | K. Iagnemma, H. Shibly, A. Rzepniewski, S. Dubowsky, P. Territories, Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility, International Symposium on Artificial Intelligence, Robotics, and Automation in Space, 2001. |
[9] | R. Lindemann, D. B. Bickler, B. D. Harrington, G. M. Ortiz, C. J. Voothees, Mars exploration rover mobility development-mechanical mobility hardware design, development, and testing, IEEE Rob. Autom. Mag., 13 (2006), 19-26. doi: 10.1109/MRA.2006.1638012 |
[10] | C. K. Liu, B. F. Wang, J. Wang, G. S. Tang, W. J. Wan, Y. L. Bu, Integrated INS and vision based orientation determination and positioning of CE-3 lunar rover, J. Spacecr. TT & C Technol., 33 (2014), 250-257. |
[11] | F. Cordes, F. Kirchner, A. Babu, Design and field testing of a rover with an actively articulated suspension system in a Mars analogy terrain, J. Field Robo., 35 (2018), 1149-1181. doi: 10.1002/rob.21808 |
[12] | L. Liang, Z. Zhang, L. Guo, C. Yang, Y. Zeng, M. Li, et al., Mobile Lunar Lander Crewed Lunar Exploration Missions, Man. Spaceflight, 21 (2015), 472-478. |
[13] | R. Zhu, Advances in the Soviet/Russian EVA Spacesuit Technology, Man. Spaceflight, 1 (2009), 25-45. |
[14] | B. Birckenstaedt, J. Hopkins, B. Kutter, F. Zegler, T. Mosher, Lunar Lander Configurations Incorporating Accessibility, Mobility, and Centaur Cryogenic Propulsion Experience, Space, 2006 (2006), 1-12. |
[15] | Q. Liang, D. Zhang, Y. Wang, G. Coppola, Y. Ge, PM based multi-component F/T sensors-State of the art and trends, Robot, Robo. Comput. Integr. Manuf., 29 (2013), 1-7. |
[16] | T. Hashimoto, T. Hoshino, S. Tanaka, M. Otsuki, H. Otake, H. Morimoto, Japanese moon lander SELENE2-Present status in 2009, Acta Astronaut., 68 (2011), 1386-1391. doi: 10.1016/j.actaastro.2010.08.027 |
[17] | F. Pierrot, C. Reynaud, A. Fournier, DELTA: a simple and efficient parallel robot, Robotica, 8 (1990), 105-109. doi: 10.1017/S0263574700007669 |
[18] | V. Poppeová, V. Bulej, P. Šindler, Development of simulation software and control system for mechanism with hybrid kinematic structure, ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), 2010. |
[19] | G. Zhong, H. Deng, G. Xin, H. Wang, Dynamic hybrid control of a hexapod walking robot experimental verification, IEEE Trans. Ind. Electron., 63 (2016), 5001-5011. |
[20] | P. Yang, F. Gao, Leg kinematic analysis and prototype experiments of walking-operating multifunctional hexapod robot, Proc. Inst. Mech. Eng. Part C, 228 (2014), 2217-2232. doi: 10.1177/0954406213516087 |
[21] | M. Dirik, A. F Kocamaz, O. Castillo, Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor, Int. J. Fuzzy Syst., 22 (2020), 1880-1890. doi: 10.1007/s40815-020-00888-9 |
[22] | M. Dirik, O. Castillo, A. F. Kocamaz, Visual-Servoing Based Global Path Planning Using Interval Type-2 Fuzzy Logic Control, Axioms, 58 (2019), 1-16. |
[23] | U. Orozco-Rosas, K. Picos, O. Montiel, Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots, IEEE Access, 7 (2019), 156787-156803. doi: 10.1109/ACCESS.2019.2949835 |
[24] | O. Montiel, U. Orozco-Rosas, R. Sepúlveda, Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles, Expert Syst. Appl., 42 (2015), 5177-5191. doi: 10.1016/j.eswa.2015.02.033 |
[25] | O. Montiel-Ross, R. Sepúlveda, O. Castillo, P. Melin, Ant colony test center for planning autonomous mobile robot navigation, Comput. Appl. Eng. Educ., 21 (2013), 214-229. doi: 10.1002/cae.20463 |
[26] | M. A. Porta Garcia, O. Montiel, O. Castillo, R. Sepúlveda, P. Melin, Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation, Appl. Soft Comput., 9 (2009), 1102-1110. doi: 10.1016/j.asoc.2009.02.014 |
[27] | Y. Pan, F. Gao, A new six-parallel-legged walking robot for drilling holes on the fuselage, Proc. Inst. Mech. Eng., Part C, 228 (2014), 753-764. doi: 10.1177/0954406213489068 |
[28] | J. T. Yen, Y. H. Chang, Rate-dependent control strategies stabilize limb forces during human locomotion, J. R. Soc. Interface, 7 (2010), 801-810. doi: 10.1098/rsif.2009.0296 |
[29] | S. K. Banala, S. K. Agrawal, S. H. Kim, J. P. Scholz, Novel gait adaptation and neuromotor training results using an active leg exoskeleton, IEEE-ASME Trans. Mechatron., 15 (2010), 216-225. doi: 10.1109/TMECH.2010.2041245 |
[30] | F. T. Cheng, H. L. Lee, D. E. Orin, Increasing the locomotive stability margin of multilegged vehicles, Proceedings 1999 IEEE International Conference on Robotics and Automation, 1999. |
[31] | D. Pongas, M. Mistry, S. Schaal, A robust quadruped walking gait for traversing rough terrain, Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007. |
[32] | S. Zhang, X. Rong, Y. Li, B. Li, A composite cog trajectory planning method for the quadruped robot walking on rough terrain, Int. J. Control Autom., 8 (2015), 101-118. doi: 10.14257/ijca.2015.8.9.11 |
[33] | H. Liu, X. Lai, W. Wu, Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints, Robo. Comput. Integr. Manuf., 29 (2013), 309-317. doi: 10.1016/j.rcim.2012.08.002 |
[34] | H. Xu, X. Xie, J. Zhuang, S. Wang, Global Time-energy Optimal Planning of Industrial Robot Trajectories, J. Mech. Eng., 46 (2010), 19-25. |
[35] | F. Liu, L. Fei, Time-jerk optimal planning of industrial robot trajectories, Int. J. Robo. Autom., 31 (2016), 1-7. |
[36] | S. F. P. Saramago, V. Steffen Jr, Optimization of the Trajectory Planning of Robot Manipulators Taking into Account the Dynamics of the System, Mech. Mach. Theory, 33 (1998), 883-894. doi: 10.1016/S0094-114X(97)00110-9 |
[37] | S. Wen, Z. Ma, S. Wen, Y. Zhao, J. Yao, The study of NAO robot arm based on direct kinematics by using D-H method, 2014 UKACC International Conference on Control (CONTROL), 2014. |
[38] | Y. Guan, K. Yokoi, Reachable Space Generation of A Humanoid Robot Using The Monte Carlo Method, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006. |
[39] | F. Liu, F. Lin, Time-jerk optimal planning of industrial robot trajectories, Int. J Robo. Autom., 31, (2016), 1-7. |
[40] | J. L. Martínez, J. González, J. Morales, A. Mandow, A. J. García-Cerezo, Mobile robot motion estimation by 2D scan matching with genetic and iterative closest point algorithms, J. Field Robo., 23 (2010), 21-34. |