Research article Special Issues

Motion and trajectory planning modeling for mobile landing mechanism systems based on improved genetic algorithm

  • Received: 04 September 2020 Accepted: 18 November 2020 Published: 26 November 2020
  • In many traditional soft-landing missions, researchers design the lander and the rover as two separate individuals, which has its limitations. At present, research on landers mainly focuses on the performance analysis of those who cannot move, and the motion of legged mobile lander has not yet been studied. In this paper, a novel Mobile Landing Mechanism (MLM) is proposed. Firstly, the monte-Carlo method is used to solve the workspace, and the motion feasibility of the mechanism is verified. Secondly, combining with the constraints of velocity, acceleration and secondary acceleration of each driving joint of the MLM, the trajectory of its joint space is planned by using cubic spline curve. And based on the weighted coefficient method, an optimal time-jerk pedestal trajectory planning model is established. Finally, by comparing the genetic algorithm (GA) with the adaptive genetic algorithm (AGA), an optimization algorithm is proposed to solve the joint trajectory optimization problem of the MLM, which can obtain better trajectory under constraints. Simulation shows that the motion performance of the mechanism is continuous and stable, which proves the rationality and effectiveness of the foot trajectory planning method.

    Citation: Jinhua Zhou, Shan Jia, Jinbao Chen, Meng Chen. Motion and trajectory planning modeling for mobile landing mechanism systems based on improved genetic algorithm[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 231-252. doi: 10.3934/mbe.2021012

    Related Papers:

  • In many traditional soft-landing missions, researchers design the lander and the rover as two separate individuals, which has its limitations. At present, research on landers mainly focuses on the performance analysis of those who cannot move, and the motion of legged mobile lander has not yet been studied. In this paper, a novel Mobile Landing Mechanism (MLM) is proposed. Firstly, the monte-Carlo method is used to solve the workspace, and the motion feasibility of the mechanism is verified. Secondly, combining with the constraints of velocity, acceleration and secondary acceleration of each driving joint of the MLM, the trajectory of its joint space is planned by using cubic spline curve. And based on the weighted coefficient method, an optimal time-jerk pedestal trajectory planning model is established. Finally, by comparing the genetic algorithm (GA) with the adaptive genetic algorithm (AGA), an optimization algorithm is proposed to solve the joint trajectory optimization problem of the MLM, which can obtain better trajectory under constraints. Simulation shows that the motion performance of the mechanism is continuous and stable, which proves the rationality and effectiveness of the foot trajectory planning method.


    加载中


    [1] T. Okada, S. Sasaki, T. Sugihara, K. Saiki, H. Akiyama, M. Ohtake, et al., Lander and rover exploration on the lunar surface: A study for SELENE-B mission, Adv. Space Res., 37 (2006), 88-92. doi: 10.1016/j.asr.2005.05.097
    [2] R. J. Williams, E. K. Gibson, The origin and stability of lunar goethite, hematite and magnetite, Earth Planet. Sci. Lett., 17 (1972), 84-88. doi: 10.1016/0012-821X(72)90261-0
    [3] T. E. Ford, C. Eng, A. F. R. Ae. S, The Apollo lunar module: a description of the construction of the lunar module used to make the first manned landing of a space vehicle on another planet, Aircraft Eng. Aerosp. Technol., 41 (1969), 26-28.
    [4] R. Parkinson, The use of system models in the Euro Moon spacecraft design, Acta Astronaut., 44 (1999), 437-443. doi: 10.1016/S0094-5765(99)00088-0
    [5] M. Benton, B. Donahue, D. Bienhoff, G. Caplin, D. Smith, K. Reiley, Configuration Options to Maximize Lunar Surface Reuse of Altair Lander Structure and Systems, AIAA SPACE 2009 Conference & Exposition, 2006.
    [6] M. A. Siegler, S. E. Smrekar, M. Grott, S. Piqueux, N. Mueller, J. Pierre, et al., The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment, Space Sci. Rev., 211 (2017), 1-17. doi: 10.1007/s11214-017-0414-0
    [7] P. J. Ye, Z. Z. Sun, H. Zhang, F. Li, An overview of the mission and technical characteristics of change'4 lunar probe, Sci. China Technol. Sci., 60 (2017), 658-667. doi: 10.1007/s11431-016-9034-6
    [8] K. Iagnemma, H. Shibly, A. Rzepniewski, S. Dubowsky, P. Territories, Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility, International Symposium on Artificial Intelligence, Robotics, and Automation in Space, 2001.
    [9] R. Lindemann, D. B. Bickler, B. D. Harrington, G. M. Ortiz, C. J. Voothees, Mars exploration rover mobility development-mechanical mobility hardware design, development, and testing, IEEE Rob. Autom. Mag., 13 (2006), 19-26. doi: 10.1109/MRA.2006.1638012
    [10] C. K. Liu, B. F. Wang, J. Wang, G. S. Tang, W. J. Wan, Y. L. Bu, Integrated INS and vision based orientation determination and positioning of CE-3 lunar rover, J. Spacecr. TT & C Technol., 33 (2014), 250-257.
    [11] F. Cordes, F. Kirchner, A. Babu, Design and field testing of a rover with an actively articulated suspension system in a Mars analogy terrain, J. Field Robo., 35 (2018), 1149-1181. doi: 10.1002/rob.21808
    [12] L. Liang, Z. Zhang, L. Guo, C. Yang, Y. Zeng, M. Li, et al., Mobile Lunar Lander Crewed Lunar Exploration Missions, Man. Spaceflight, 21 (2015), 472-478.
    [13] R. Zhu, Advances in the Soviet/Russian EVA Spacesuit Technology, Man. Spaceflight, 1 (2009), 25-45.
    [14] B. Birckenstaedt, J. Hopkins, B. Kutter, F. Zegler, T. Mosher, Lunar Lander Configurations Incorporating Accessibility, Mobility, and Centaur Cryogenic Propulsion Experience, Space, 2006 (2006), 1-12.
    [15] Q. Liang, D. Zhang, Y. Wang, G. Coppola, Y. Ge, PM based multi-component F/T sensors-State of the art and trends, Robot, Robo. Comput. Integr. Manuf., 29 (2013), 1-7.
    [16] T. Hashimoto, T. Hoshino, S. Tanaka, M. Otsuki, H. Otake, H. Morimoto, Japanese moon lander SELENE2-Present status in 2009, Acta Astronaut., 68 (2011), 1386-1391. doi: 10.1016/j.actaastro.2010.08.027
    [17] F. Pierrot, C. Reynaud, A. Fournier, DELTA: a simple and efficient parallel robot, Robotica, 8 (1990), 105-109. doi: 10.1017/S0263574700007669
    [18] V. Poppeová, V. Bulej, P. Šindler, Development of simulation software and control system for mechanism with hybrid kinematic structure, ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), 2010.
    [19] G. Zhong, H. Deng, G. Xin, H. Wang, Dynamic hybrid control of a hexapod walking robot experimental verification, IEEE Trans. Ind. Electron., 63 (2016), 5001-5011.
    [20] P. Yang, F. Gao, Leg kinematic analysis and prototype experiments of walking-operating multifunctional hexapod robot, Proc. Inst. Mech. Eng. Part C, 228 (2014), 2217-2232. doi: 10.1177/0954406213516087
    [21] M. Dirik, A. F Kocamaz, O. Castillo, Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor, Int. J. Fuzzy Syst., 22 (2020), 1880-1890. doi: 10.1007/s40815-020-00888-9
    [22] M. Dirik, O. Castillo, A. F. Kocamaz, Visual-Servoing Based Global Path Planning Using Interval Type-2 Fuzzy Logic Control, Axioms, 58 (2019), 1-16.
    [23] U. Orozco-Rosas, K. Picos, O. Montiel, Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots, IEEE Access, 7 (2019), 156787-156803. doi: 10.1109/ACCESS.2019.2949835
    [24] O. Montiel, U. Orozco-Rosas, R. Sepúlveda, Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles, Expert Syst. Appl., 42 (2015), 5177-5191. doi: 10.1016/j.eswa.2015.02.033
    [25] O. Montiel-Ross, R. Sepúlveda, O. Castillo, P. Melin, Ant colony test center for planning autonomous mobile robot navigation, Comput. Appl. Eng. Educ., 21 (2013), 214-229. doi: 10.1002/cae.20463
    [26] M. A. Porta Garcia, O. Montiel, O. Castillo, R. Sepúlveda, P. Melin, Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation, Appl. Soft Comput., 9 (2009), 1102-1110. doi: 10.1016/j.asoc.2009.02.014
    [27] Y. Pan, F. Gao, A new six-parallel-legged walking robot for drilling holes on the fuselage, Proc. Inst. Mech. Eng., Part C, 228 (2014), 753-764. doi: 10.1177/0954406213489068
    [28] J. T. Yen, Y. H. Chang, Rate-dependent control strategies stabilize limb forces during human locomotion, J. R. Soc. Interface, 7 (2010), 801-810. doi: 10.1098/rsif.2009.0296
    [29] S. K. Banala, S. K. Agrawal, S. H. Kim, J. P. Scholz, Novel gait adaptation and neuromotor training results using an active leg exoskeleton, IEEE-ASME Trans. Mechatron., 15 (2010), 216-225. doi: 10.1109/TMECH.2010.2041245
    [30] F. T. Cheng, H. L. Lee, D. E. Orin, Increasing the locomotive stability margin of multilegged vehicles, Proceedings 1999 IEEE International Conference on Robotics and Automation, 1999.
    [31] D. Pongas, M. Mistry, S. Schaal, A robust quadruped walking gait for traversing rough terrain, Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007.
    [32] S. Zhang, X. Rong, Y. Li, B. Li, A composite cog trajectory planning method for the quadruped robot walking on rough terrain, Int. J. Control Autom., 8 (2015), 101-118. doi: 10.14257/ijca.2015.8.9.11
    [33] H. Liu, X. Lai, W. Wu, Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints, Robo. Comput. Integr. Manuf., 29 (2013), 309-317. doi: 10.1016/j.rcim.2012.08.002
    [34] H. Xu, X. Xie, J. Zhuang, S. Wang, Global Time-energy Optimal Planning of Industrial Robot Trajectories, J. Mech. Eng., 46 (2010), 19-25.
    [35] F. Liu, L. Fei, Time-jerk optimal planning of industrial robot trajectories, Int. J. Robo. Autom., 31 (2016), 1-7.
    [36] S. F. P. Saramago, V. Steffen Jr, Optimization of the Trajectory Planning of Robot Manipulators Taking into Account the Dynamics of the System, Mech. Mach. Theory, 33 (1998), 883-894. doi: 10.1016/S0094-114X(97)00110-9
    [37] S. Wen, Z. Ma, S. Wen, Y. Zhao, J. Yao, The study of NAO robot arm based on direct kinematics by using D-H method, 2014 UKACC International Conference on Control (CONTROL), 2014.
    [38] Y. Guan, K. Yokoi, Reachable Space Generation of A Humanoid Robot Using The Monte Carlo Method, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006.
    [39] F. Liu, F. Lin, Time-jerk optimal planning of industrial robot trajectories, Int. J Robo. Autom., 31, (2016), 1-7.
    [40] J. L. Martínez, J. González, J. Morales, A. Mandow, A. J. García-Cerezo, Mobile robot motion estimation by 2D scan matching with genetic and iterative closest point algorithms, J. Field Robo., 23 (2010), 21-34.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3521) PDF downloads(214) Cited by(6)

Article outline

Figures and Tables

Figures(12)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog