Citation: Changjin Xu , Maoxin Liao, Peiluan Li, Qimei Xiao, Shuai Yuan. A new method to investigate almost periodic solutions for an Nicholson’s blowflies model with time-varying delays and a linear harvesting term[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3830-3840. doi: 10.3934/mbe.2019189
[1] | A.L. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9–65. |
[2] | W.S. Gurney, S.P. Blythe and R.M. Nisbet, Nicholson's blowflies revisited, Nat., 287 (1980), 17–21. |
[3] | M.R.S. Kulenovic, G. Ladas and Y.G. Sficas, Global attractivity in population dynamics, Comput. Math. Appl., 18 (1989), 925–928. |
[4] | J.W.H. So and J.S. Yu, On the stability and uniform persistence of a discrete model of Nicholson's blowflies, J. Math. Anal. Appl., 193 (1995), 233–244. |
[5] | X.H. Ding and W.X. Li, Stability and bifurcation of numerical discretization Nicholson's blowflies equation with delay, Discrete Dyn. Nat. Soc., 2006 (2006),19413. |
[6] | S.H. Saker and B.G. Zhang, Oscillation in a discrete partial delay Nicholson's blowflies model,Math. Comput. Modelling, 36 (2002), 1021–1026. |
[7] | J.W.LiandC.X.Du, ExistenceofpositiveperiodicsolutionsforageneralizedNicholson'sblowflies model, J. Comput. Appl. Math., 221 (2008), 226–233. |
[8] | W.T. Li and Y.H. Fan, Existence and global attractivity of positive periodic solutions for the impulsive delay Nicholson's blowflies model, J. Comput. Appl. Math., 201 (2007), 55–68. |
[9] | B.G. Zhang and H.X. Xu, A note on the global attractivity of a discrete model of Nicholson's blowflies, Discrete Dyn. Nat. Soc., 3 (1999), 51–55. |
[10] | J.J. Wei and Michael Y. Li, Hopf bifurcation analysis in a delayed Nicholson's blowflies equation,Nonlinear Anal., 60 (2005), 1351–1367. |
[11] | S.H. Saker and S. Agarwal, Oscillation and global attractivity in a periodic Nicholson's blowflies model, Math. Comput. Modelling, 35 (2002), 719–731. |
[12] | B.W. Liu, Global dynamic behaviors for a delayed Nicholson's blowflies model with a linear harvesting term, Electron. J. Qual. Theor. Diff. Equat., 45 (2013), 1–13. |
[13] | J.O. Alzabut, Almost periodic solutions for an impulsive delay Nicholson's blowflies model, J. Comput. Appl. Math., 234 (2010), 233–239. |
[14] | T. Faria, Global asymptotic behaviour for a Nicholson model with path structure and multiple delays, Nonlinear Anal., 74 (2011) 7033–7046. |
[15] | L.V. Hien, Global asymptotic behaviour of positive solutions to a non-autonomous Nicholson's blowflies model with delays, J. Biol. Dyn., 8 (2014), 135–144. |
[16] | P. Amster and A. Deboli, Existence of positive T-periodic solutions of a generalized Nicholson's blowflies model with a nonlinear harvesting term, Appl. Math. Lett., 25 (2012), 1203–1207. |
[17] | C.J. Xu, M.X. Liao and Y.C. Pang, Existence and convergence dynamics of pseudo almost periodic solutions for Nicholson's blowflies model with time-varying delays and a harvesting term, Acta Appl. Math., 146 (2016), 95–112. |
[18] | H. Zhou, Z.F. Zhou and Z.M. Qiao, Mean-square almost periodic solution for impulsive stochastic Nicholson's blowflies model with delays, Appl. Mathe. Comput., 219 (2013), 5943–5948. |
[19] | C.J. Xu, P.L. Li and Y.C. Pang, Exponential stability of almost periodic solutions for memristor-based neural networks with distributed leakage delays, Neural Comput., 28 (2016), 2726–2756. |
[20] | Z.J. Yao, Existence and exponential stability of the unique positive almost periodic solution for impulsive Nicholson's blowflies model with linear harvesting term, Appl. Math. Modelling, 39 (2015), 7124–7133. |
[21] | L.G. Yao, Dynamics of Nicholson's blowflies models with a nonlinear density-dependent mortality,Appl. Math. Modelling, 64 (2018), 185–195. |
[22] | L. Berezansky, E. Braverman and L. Idels, Nicholson's blowflies differential equations revised: Main results and open problem, Appl. Math. Modelling, 34 (2010), 1405–1417. |
[23] | A.M. Fink, Almost Periodic Differential Equations(Lecture Notes in Mathematics), 1974th edition, Springer, Berlin, 1974. |
[24] | C.Y. He, Almost Periodic Differential Equation, Higher Education Publishing House, Beijing, 1992. |
[25] | F. Long, Positive almost periodic solution for a class of Nicholson's blowflies model with a linear harvesting term, Nonlinear Anal.: Real World Appl., 13 (2012), 686–693. |
[26] | H.S. Ding and J.J. Nieto, A new approach for positive almost solutions to a class of Nicholson's blowflies model, J. Comput. Appl. Math., 253 (2013), 249–254. |
[27] | X.A. Hao, M.Y. Zuo and L.S. Liu, Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities, Appl. Math. Lett., 82 (2018), 24–31. |
[28] | Y.Z. Bai and X.Q. Mu, Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptible, J. Appl. Anal. Comput., 8 (2018), 402–412. |
[29] | M.M. Li and J.R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254–265. |
[30] | X.K. Cao and J.R. Wang, Finite-time stability of a class of oscillating systems with two delays,Math. Meth. Appl. Sci., 41 (2018), 4943–4954. |
[31] | X.X. Zheng, Y.D. Shang and X.M. Peng, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Mathe. Scientia, 37B (2017), 998–1018. |
[32] | X.H. Tang and S.T. Chen, Ground state solutions of Nehari-Pohožaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Diff. Equat., 56 (2017), 1–25. |
[33] | S.T. Chen and X.H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin. Dyn. Syst. A, 38 (2018), 2333–2348. |
[34] | S.T. Chen and X.H. Tang, Geometrically distinct solutions for Klein-Gordon-Maxwell systems with super-linear nonlinearities, Appl. Math. Lett., 90 (2019), 188–193. |
[35] | S.T. Chen and X.H. Tang, Ground state solutions of Schrödinger-Poisson systems with variable potential and convolution nonlinearity, J. Math. Anal. Appl., 473 (2019), 87–111. |
[36] | L. Duan, L.H. Huang, Pseudo almost periodic dynamics of delay Nicholson's blowflies model with a linear harvesting term, Math. Meth. Appl. Sci., 38 (2015), 1178–1189. |
[37] | J.O. Alzabut, Almost periodic solutions for an impulsive delay Nicholson's blowflies model, J. Comput. Appl. Math., 234 (2010), 233–239. |
[38] | W. Wang, L. Wang and W. Chen, Existence and exponential stability of positive almost periodic solution for Nicholson-type delay systems, Nonlinear Anal.: Real World Appl., 12 (2011), 1938–1949. |
[39] | W. Chen and B. Liu, Positive almost periodic solution for a class of Nicholson's blowflies model with multiple time-varying delays, J. Comput. Appl. Math., 235 (2011), 2090–2097. |
[40] | Z. Huang, S. Mohamad, X. Wang, et al., Convergence analysis of general neural networks under almost periodic stimli, Int. J. Circ. Theor. Appl., 37 (2009), 723–750. |
[41] | F.X. Lin, Exponential Dichotomies of Linear System, Anhui University Press, Hefei, 1999. |
[42] | W.A. Coppel, Dichotomies in Stability Theory(Lecture Notes in Mathematics), 1978th edition, Springer, Berlin, 1978. |
[43] | H.S. Ding and T.J. Xiao, Existence of positive almost automorphic solutions to nonlinear delay integral equations, Nonlinear Anal.: Theory, Meth. Appl., 70 (2009), 2216–2231. |
[44] | F. Chérif, Pseudo almost periodic solution of Nicholson's blowflies model with mixed delays, Appl. Math. Modelling, 39 (2015), 5152–5163. |
[45] | Z.J. Yao, Uniqueness and global exponential stability of almost periodic solution for Hematopoiesis model on time scales, J. Nonlinear Sci. Appl., 8 (2016), 142–152. |