Citation: Thomas Wetzel, Julio Pacio, Luca Marocco, Alfons Weisenburger, Annette Heinzel, Wolfgang Hering, Carsten Schroer, Georg Muller, Jurgen Konys, Robert Stieglitz, Joachim Fuchs, Joachim Knebel, Concetta Fazio, Markus Daubner, Frank Fellmoser. Liquid metal technology for concentrated solar power systems: Contributions by the German research program[J]. AIMS Energy, 2014, 2(1): 89-98. doi: 10.3934/energy.2014.1.89
[1] | Singer C, Buck R, Pitz-Paal R, et al. (2010) Assessment of Solar Power Tower Driven Ultrasupercritical Steam Cycles Applying Tubular Central Receivers with Varied Heat Transfer Media. J Sol Energy Eng 132: 041010. doi: 10.1115/1.4002137 |
[2] | Hering W, Stieglitz R, Wetzel T. (2012) Application of liquid metals for solar energy systems. EPJ Web of Conferences 33: 03003. doi: 10.1051/epjconf/20123303003 |
[3] | Bienert W B (1980) The heat pipe and its application to solar receivers Electric Power Systems Research. 3: 111-123. |
[4] | Moreno J, Rawlinson S, Andraka C, et al. (2004) Dish/stirling hybrid-heat-pipe-receiver design and test results. IEEE. pp. 556-564. |
[5] | Diver R, Fish J, Levitan R, et al. (1992) Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport. Sol energy 48: 21-30. doi: 10.1016/0038-092X(92)90173-8 |
[6] | Boerema N, Morrison G, Taylor R, et al. (2012) Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Sol Energy 86: 2293-2305. doi: 10.1016/j.solener.2012.05.001 |
[7] | Kotzé JP, von Backström TW, Erens PJ. NaK as a primary heat transfer fluid in thermal solar power installations; 2012. Proceeding of SolarPaces. |
[8] | Pacio J, Wetzel T (2013) Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Sol Energy 93: 11-22. doi: 10.1016/j.solener.2013.03.025 |
[9] | Pacio J, Singer C, Wetzel T, et al. (2013) Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants. Appl Therm Eng 60: 295-302. |
[10] | Heinzel V, Huber F, Peppler W, et al. (1993) Ergebnisse des Kernforschungszentrums Karlsruhe. Sonnenenergie 2: 14-16. |
[11] | Del Giacco M, Weisenburger A, Mueller G (2012) Fretting corrosion in liquid lead of structural steels for lead-cooled nuclear systems: Preliminary study of the influence of temperature and time. J Nucl Mater 423: 79-86. doi: 10.1016/j.jnucmat.2012.01.007 |
[12] | Schroer C, Wedemeyer O, Skrypnik A, et al. (2012) Corrosion kinetics of steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450 ℃. J Nucl Mater 431: 105-112. doi: 10.1016/j.jnucmat.2011.11.014 |
[13] | Weisenburger A, Müller G, Heinzel A, et al. (2011) Corrosion, Al containing corrosion barriers and mechanical properties of steels foreseen as structural materials in liquid lead alloy cooled nuclear systems. Nucl Eng Des 241: 1329-1334. doi: 10.1016/j.nucengdes.2010.08.005 |
[14] | Weisenburger A, Schroer C, Jianu A, et al. (2011) Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models. J Nucl Mater 415: 260-269. doi: 10.1016/j.jnucmat.2011.04.028 |
[15] | Engelko V, Mueller G, Rusanov A, et al. (2011) Surface modification/alloying using intense pulsed electron beam as a tool for improving the corrosion resistance of steels exposed to heavy liquid metals. J Nucl Mater 415: 270-275. doi: 10.1016/j.jnucmat.2011.04.030 |
[16] | Litfin K, Batta A, Class A, et al. (2011) Investigation on heavy liquid metal cooling of ADS fuel pin assemblies. J Nucl Mater 415: 425-432. doi: 10.1016/j.jnucmat.2011.04.048 |
[17] | Marocco L, Loges A, Wetzel T, et al. (2012) Experimental investigation of the turbulent heavy liquid metal heat transfer in the thermal entry region of a vertical annulus with constant heat flux on the inner surface. Int J Heat Mass Tran 55: 6435-6445. doi: 10.1016/j.ijheatmasstransfer.2012.06.037 |