Citation: Duong Van, Diaz Gerardo. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems[J]. AIMS Energy, 2014, 1(1): 99-115. doi: 10.3934/energy.2014.1.99
[1] | Chen Y, Pridasawas W, Lundqvist P. (2010) Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production. Solar Energy 84: 1103-1110. |
[2] | Yamaguchi H, Zhang X, Fujima K, et al. (2006) Solar energy powered rankine cycle using supercritical CO2. Appl Therm Eng 26: 2345-2354. |
[3] | Kim MH, Pettersen J, Bullard CW. (2004) Fundamental process and system design issues in CO2 vapor compression systems. Prog Energ Combust 30: 119-174. |
[4] | Liu J, Chen H, Xu Y, et al. (2014) A solar energy storage and power generation system based on supercritical carbon dioxide. Renew Energ 64: 43-51. |
[5] | Winston R. (1974) Principles of solar concentrators of a novel design. Sol Energ 16: 89-95. |
[6] | Kim YS, Balkoski K, Jiang L, et al. (2013) Efficient stationary solar thermal collector systems operating at a medium-temperature range. Appl Energ 111: 1071-1079. |
[7] | Odeh S, Morrison G, Behnia M. (1998) Modeling of parabolic trough direct steam generation solar collectors. Sol Energ 62: 395-406. |
[8] | Tamme R, Laing D, Steinmann WD. (2004) Advanced thermal energy storage technology for parabolic trough. J Sol Energ Eng 126: 794-800. |
[9] | Price H, Lupfert E, Kearney D, et al. (2002) Advances in parabolic trough solar power technology. J Sol Energ Eng 124: 109-125. |
[10] | Montes MJ, Abanades A, Martinez-Val JM. (2010) Thermofluidynamic model and comparative analysis of parabolic trough collectors using oil, water/steam, or molten salt as heat transfer fluids. J Sol Energ Eng 132: 1-7. |
[11] | Guyer EC. (1999) Handbook of Applied Thermal Design. In: Taylor, Francis. |
[12] | Trovar-Fonseca A. (2008) Performance assessment of three concentrating solar thermal units designed with XCPC reflectors and evacuated tubes, using an analytical thermal model. Master's thesis, University of California, Merced. |
[13] | Duffe JA, Beckman WA. (1999) Solar Engineering of Thermal Processes. Inc., 3rd edition. John Wiley & Sons. |
[14] | Klien SA. Engineering Equation Solver (EES) [Ver. 9.433]. F-Chart Software, Madison. |
[15] | Khoukhi M, Maruyama S. (2005) Theoretical approach of a flat plate solar collector with clear and low-iron glass covers taking into account the spectral absorption and emission within glass covers layer. Renew Energ 30: 1177-1194. |
[16] | Winston R, Diaz G, Ritchel A, et al. (2009) High temperature CPC collectors with chinese vacuum tube receivers. In: Goswami D. and Zhao Y. (eds.), Proceedings of ISES World Congress 2007 (Vol. I - Vol. V), Springer Berlin Heidelberg, 661-662. |
[17] | O'Gallager JJ, Winston R, Gee R. (2006) Continuing development of high-performance low-cost XCPC. Proceedings of ASME International Solar Energy Conference, Solar 2006 Vol. I - Vol. III: 66-72. |
[18] | Wirz M, Roesle M, Steinfeld A. (2012) Three-dimensional optical and thermal numerical model of solar tubular receivers in parabolic trough concentrators. J Sol Energ Eng 234: 041012:1-9. |
[19] | Dudley V, Kolb G, Sloan M, et al. (1994) SEGS LS2 solar collector - test results. Report of Sandia National Laboratory, No. SANDIA94-1884. |