Citation: Cheng Li, Xiuzhen Sun, Ming Zhao, Shen Yu, Qian Huang, Xiaoqing Zhang, Zhenxiao Huang, Shunjiu Cui, Bing Zhou. Comparison of airflow characteristics after Draf Ⅲ frontal sinus surgery and normal person by numerical simulation[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 1750-1760. doi: 10.3934/mbe.2019084
[1] | P. J. Wormald, Salvage frontal sinus surgery: The endoscopic modified Lothrop procedure, Laryngoscope, 2 (2003), 276–283. |
[2] | W. Draf, Endonasal micro-endoscopic frontal sinus surgery: The fulda concept, Operative Techniques in Otolaryngology-Head and Neck Surgery, 2 (1991), 234–240. |
[3] | L. C. Shih, V. S. Patel and G. W. Choby, et al., Evolution of the endoscopic modified Lothrop procedure: A systematic review and meta-analysis, Laryngoscope, 2 (2018), 317–326. |
[4] | N. Choudhury, A. Hariri and H. Saleh, Extended applications of the endoscopic modified Lothrop procedure, J. Laryngol. Otol., 9 (2016), 827–832. |
[5] | C. Georgalas, F. Hansen and W. J. Videler, et al., Long terms results of Draf type III (modified endoscopic Lothrop) frontal sinus drainage procedure in 122 patients: A single centre experience, Rhinology, 2 (2011), 195–201. |
[6] | J. M. Yip, K. A. Seiberlin and P. J. Wormald, Patient-reported olfactory function following endoscopic sinus surgery with modified endoscopic Lothrop procedure/Draf 3, Rhinology, 2 (2011), 217–220. |
[7] | T. Ye, P. H. Hwang and Z. Huang, et al., Frontal ostium neo-osteogenesis and patency after Draf III procedure: A computer-assisted study, Int. Forum. Allergy Rhinol., 9 (2014), 739–744. |
[8] | D. K. Morrissey, A. Bassiouni and A. J. Psaltis, et al., Outcomes of revision endoscopic modified Lothrop procedure, Int. Forum. Allergy Rhinol., 5 (2016), 518–522. |
[9] | C. Li, B. Zhou and Q. Huang, et al., [Prospective study of the impact on nasal function of the Draf Ⅲ frontal sinus surgery], Chin. J. Otorhinolaryngol. Head Neck Surgery, 9 (2014), 1–5. |
[10] | R. Jankowski, D. Pigret and F. Decroocq, et al., Comparison of radical (nasalisation) and functional ethmoidectomy in patients with severe sinonasal polyposis. A retrospective study, Rev. Laryngol. Otol. Rhinol., 3 (2006), 131–140. |
[11] | A. Bassiouni and P. J. Wormald, Role of frontal sinus surgery in nasal polyp recurrence, Laryngoscope, 1 (2013), 36–41. |
[12] | X. Liu, Z. Gao and H. Xiong, et al., Three-dimensional hemodynamics analysis of the circle of Willis in the patient-specific nonintegral arterial structures, Biomech Model Mechan, 6 (2016), 1439–1456. |
[13] | P. Xu, X. Liu and H. Zhang, et al., Assessment of boundary conditions for CFD simulation in human carotid artery, Biomech. Model Mechan., 6 (2018), 1581–1597. |
[14] | S. Zhao, Z. Gao and H. Zhang, et al., Robust Segmentation of Intima-Media Borders with Different Morphologies and Dynamics During the Cardiac Cycle, IEEE J. Biomed. Health, 5 (2018), 1571–1582. |
[15] | B. Zhou, Q. Huang and S. Cui, et al., Impact of airflow communication between nasal cavities on nasal ventilation, Orl. J. Otorhinolaryngol. Relat. Spec., 5 (2013), 301–308. |
[16] | W. Draf and A. Minovi, The "Frontal T" in the refinement of endonasal frontal sinus type III drainage, Operative Techniques in Otolaryngology-Head and Neck Surgery, 2 (2006), 121–125. |
[17] | K. Zhao and J. Jiang, What is normal nasal airflow? A computational study of 22 healthy adults, Int. Forum. Allergy. Rh., 6 (2014), 435–446. |
[18] | K. Keyhani, P. W. Scherer and M. M. Mozell, Numerical simulation of airflow in the human nasal cavity, J. Biomech. Eng., 4 (1995), 429. |
[19] | J. Wen, K. Inthavong and J. Tu, et al., Numerical simulations for detailed airflow dynamics in a human nasal cavity, Resp. Physiol. Neurobi., 2 (2008), 125–135. |
[20] | J. H. Zhu, H. P. Lee and K. M. Lim, et al., Effect of accessory ostia on maxillary sinus ventilation: A computational fluid dynamics (CFD) study, Resp. Physiol. Neurobi., 2 (2012), 91–99. |
[21] | J. H. Zhu, K. M. Lim and K. T. M. Thong, et al., Assessment of airflow ventilation in human nasal cavity and maxillary sinus before and after targeted sinonasal surgery: A numerical case study, Resp. Physiol. Neurobi., (2014), 29–36. |
[22] | A. A. Gungor, The aerodynamics of the sinonasal interface: The nose takes wing-a paradigm shift for our time, Int. Forum. Allergy. Rh., 4 (2013), 299–306. |
[23] | J. Lindemann, T. Keck and K. Wiesmiller, et al., A numerical simulation of intranasal air temperature during inspiration, Laryngoscope, 6 (2004), 1037–1041. |
[24] | J. Lindemann, H. Brambs and T. Keck, et al., Numerical simulation of intranasal airflow after radical sinus surgery, Am. J. Otolaryng., 3 (2005), 175–180. |
[25] | O. Abouali, E. Keshavarzian and P. Farhadi Ghalati, et al., Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery, Resp. Physiol. Neurobi., 3 (2012), 335–345. |
[26] | S. Yu, J. Z. Wang and X. Z. Sun, et al., Numerical analysis on deposition of particulate matters in respiratory tract, J. Med. Biomech., 3 (2016), 193–198. |