A dynamic model describing heterotrophic culture of chorella and its stability analysis

  • Received: 01 October 2009 Accepted: 29 June 2018 Published: 01 August 2011
  • MSC : Primary: 34K20; Secondary: 92C37.

  • Chlorella is an important species of microorganism, which includes about 10 species. Chlorella USTB01 is a strain of microalga which is isolated from Qinghe River in Beijing and has strong ability in the utilization of organic compounds and was identified as Chlorella sp. (H. Yan etal, Isolation and heterotrophic culture of Chlorella sp., J. Univ. Sci. Tech. Beijing, 2005, 27:408-412). In this paper, based on the standard Chemostat models and the experimental data on the heterotrophic culture of Chlorella USTB01, a dynamic model governed by differential equations with three variables (Chlorella, carbon source and nitrogen source) is proposed. For the model, there always exists a boundary equilibrium, i.e. Chlorella-free equilibrium. Furthermore, under additional conditions, the model also has the positive equilibria, i.e., the equilibira for which Chlorella, carbon source and nitrogen source are coexistent. Then, local and global asymptotic stability of the equilibria of the model have been discussed. Finally, the parameters in the model are determined according to the experimental data, and numerical simulations are given. The numerical simulations show that the trajectories of the model fit the trends of the experimental data well.

    Citation: Yan Zhang, Wanbiao Ma, Hai Yan, Yasuhiro Takeuchi. A dynamic model describing heterotrophic culture of chorella and its stability analysis[J]. Mathematical Biosciences and Engineering, 2011, 8(4): 1117-1133. doi: 10.3934/mbe.2011.8.1117

    Related Papers:

    [1] Bao-Zhu Guo, Li-Ming Cai . A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences and Engineering, 2011, 8(3): 689-694. doi: 10.3934/mbe.2011.8.689
    [2] Zita Abreu, Guillaume Cantin, Cristiana J. Silva . Analysis of a COVID-19 compartmental model: a mathematical and computational approach. Mathematical Biosciences and Engineering, 2021, 18(6): 7979-7998. doi: 10.3934/mbe.2021396
    [3] Urszula Foryś, Jan Poleszczuk . A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences and Engineering, 2011, 8(2): 627-641. doi: 10.3934/mbe.2011.8.627
    [4] Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu . Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295
    [5] Xiong Li, Hao Wang . A stoichiometrically derived algal growth model and its global analysis. Mathematical Biosciences and Engineering, 2010, 7(4): 825-836. doi: 10.3934/mbe.2010.7.825
    [6] Arthur D. Lander, Qing Nie, Frederic Y. M. Wan . Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences and Engineering, 2005, 2(2): 239-262. doi: 10.3934/mbe.2005.2.239
    [7] Zhenyuan Guo, Lihong Huang, Xingfu Zou . Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Mathematical Biosciences and Engineering, 2012, 9(1): 97-110. doi: 10.3934/mbe.2012.9.97
    [8] Yang Kuang, Jef Huisman, James J. Elser . Stoichiometric Plant-Herbivore Models and Their Interpretation. Mathematical Biosciences and Engineering, 2004, 1(2): 215-222. doi: 10.3934/mbe.2004.1.215
    [9] Hongjing Shi, Wanbiao Ma . An improved model of t cell development in the thymus and its stability analysis. Mathematical Biosciences and Engineering, 2006, 3(1): 237-248. doi: 10.3934/mbe.2006.3.237
    [10] Jinliang Wang, Jingmei Pang, Toshikazu Kuniya . A note on global stability for malaria infections model with latencies. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995
  • Chlorella is an important species of microorganism, which includes about 10 species. Chlorella USTB01 is a strain of microalga which is isolated from Qinghe River in Beijing and has strong ability in the utilization of organic compounds and was identified as Chlorella sp. (H. Yan etal, Isolation and heterotrophic culture of Chlorella sp., J. Univ. Sci. Tech. Beijing, 2005, 27:408-412). In this paper, based on the standard Chemostat models and the experimental data on the heterotrophic culture of Chlorella USTB01, a dynamic model governed by differential equations with three variables (Chlorella, carbon source and nitrogen source) is proposed. For the model, there always exists a boundary equilibrium, i.e. Chlorella-free equilibrium. Furthermore, under additional conditions, the model also has the positive equilibria, i.e., the equilibira for which Chlorella, carbon source and nitrogen source are coexistent. Then, local and global asymptotic stability of the equilibria of the model have been discussed. Finally, the parameters in the model are determined according to the experimental data, and numerical simulations are given. The numerical simulations show that the trajectories of the model fit the trends of the experimental data well.


  • This article has been cited by:

    1. Wei Wang, Wanbiao Ma, Hai Yan, Global Dynamics of Modeling Flocculation of Microorganism, 2016, 6, 2076-3417, 221, 10.3390/app6080221
    2. Rong Liu, Wanbiao Ma, Noise-induced stochastic transition: A stochastic chemostat model with two complementary nutrients and flocculation effect, 2021, 147, 09600779, 110951, 10.1016/j.chaos.2021.110951
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2549) PDF downloads(511) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog