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Abstract. Chlorella is an important species of microorganism, which includes
about 10 species. Chlorella USTB01 is a strain of microalga which is isolated

from Qinghe River in Beijing and has strong ability in the utilization of or-

ganic compounds and was identified as Chlorella sp. (H. Yan etal, Isolation
and heterotrophic culture of Chlorella sp., J. Univ. Sci. Tech. Beijing, 2005,

27:408-412). In this paper, based on the standard Chemostat models and the

experimental data on the heterotrophic culture of Chlorella USTB01, a dy-
namic model governed by differential equations with three variables (Chlorella,

carbon source and nitrogen source) is proposed. For the model, there always

exists a boundary equilibrium, i.e. Chlorella-free equilibrium. Furthermore,
under additional conditions, the model also has the positive equilibria, i.e., the

equilibira for which Chlorella, carbon source and nitrogen source are coexis-
tent. Then, local and global asymptotic stability of the equilibria of the model

have been discussed. Finally, the parameters in the model are determined ac-
cording to the experimental data, and numerical simulations are given. The
numerical simulations show that the trajectories of the model fit the trends of

the experimental data well.

1. Introduction. Chlorella is an important species of microorganism, which in-
cludes about 10 species (see, for example, [3]). A single Chlorella cell is of sphere
with the diameter from 2µm to 12µm. Chlorella has the following characteristics.
(a) It grows quickly and can efficiently photosynthesize. (b) It includes rich protein,
highly unsaturated fatty acids, carotenoid, lutein, astaxanthin and a variety of vi-
tamins (see, for example, [3], [36] - [38] and [40]). In particular, lutein in Chlorella
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has the functions of restraining the decreasing of sight and the blindness caused by
age and of inhibiting on the growth of tumor etc. (see, for example, [12], [13], [15],
[19] and [23]). In addition, Chlorella also contains Chlorella growth factor which
has the effect of increasing immune response of T cells and B cells. Chlorella also
has the effect of decomposing and eliminating harmful substances in environment
(see, for example, [10] and [33]). Furthermore, Chlorella has the effect of absorbing
the heavy metal copper etc.. Hence, in environmental science field, Chlorella is
usually used to remove organic pollutants and heavy metals (see, for example, [34]
and [35]).

1.1. Culture of Chlorella. The culture of Chlorella is divided into autotrophic cul-
ture and heterotrophic culture. Heterotrophic culture is divided into batch culture,
feed-batch culture and continuous culture. Batch culture is extensively used in ap-
plications. In batch culture, microorganisms are put into the culture vessel which
contains certain nutrients, under appropriate temperature, salinity and pH. Then,
after a period of time of culture, the microorganisms in the culture vessel are har-
vested one-time. Batch culture is simple, but it is usually difficult to achieve higher
biomass of microorganisms. Furthermore, the increasing of the initial concentra-
tion of nutrients may result in the inhibition on the growth of microorganisms. In
feed-batch culture, nutrients are added into the culture vessel for every fixed time.
Hence, feed-batch culture can reduce the inhibition on the growth of microorgan-
isms and achieve higher biomass of microorganisms. Continuous culture is divided
into semi-continuous culture and continuous culture. Semi-continuous culture is
that nutrients are added into the culture vessel and, at the same time, microor-
ganism is harvested for every fixed time. In continuous culture, nutrients are put
into the culture vessel continuously and, at the same time, microorganisms flow out
continuously. Hence, a balance between the inflow rate and the outflow rate can
be maintained. Furthermore, continuous culture can also decrease the inhibition
on the growth of microorganism caused by higher concentration of nutrients and
accumulation of harmful substances in the culture vessel.

1.2. Heterotrophic culture of Chlorella sp. USTB01. It has been found that
some species of Chlorella can not only be cultured in suitable organisms even in the
absence of light (see, for example, [8] and [30]), but also contain richer lutein (see,
for example, [8], [21] and [27]). Usually, carbon source and nitrogen source are main
nutrients in culture of Chlorella. In [25], [26] and [31], the impact of concentration
of glucose on the growth of Chlorella has been studied. However, till now, there
are few species of Chlorella which can grow quickly (see, for example, [18], [22], [36]
and [38]).

Recently, a species of Chlorella, named Chlorella sp. USTB01, which can be
cultured quickly by the method of heterotrophic culture has been successfully sieved
out from Qinghe river in Beijing (see, for example, [36]). Then, the impact of
carbon-to-nitrogen mass ratio on the growth of Chlorella sp. USTB01 has also been
investigated in details in [31], [36] and [37]. In the experiments, nitrogen sources
are urea, ammonium chloride and potassium nitrate, and the culture time is limited
to 36 hours. The experimental data show that, while carbon-to-nitrogen mass ratio
is 20:1 and nitrogen source is ammonium chloride, the biomass of Chlorella sp.
USTB01 in the culture vessel is higher (see Fig.1), but the protein contained is
lower.
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Figure 1. The effect of different nitrogen sources on the growth of Chlorella
USTB01 when carbon-to-nitrogen mass ratio is 20:1

If carbon-to-nitrogen mass ratio is still 20:1, but nitrogen source is replaced by
potassium nitrate, then, the biomass of Chlorella sp. USTB01 in the culture vessel
is not higher (see Fig.1), but the protein contained is higher.

Furthermore, if carbon-to-nitrogen mass ratio is 10:1 and nitrogen source is am-
monium chloride, the biomass of Chlorella USTB01 in the culture vessel is higher
(see Fig.2), and the protein contained is also higher.
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Figure 2. The effect of different nitrogen sources on the growth of Chlorella
USTB01 when carbon-to-nitrogen mass ratio is 10:1

The purpose of the paper is to model the growth of Chlorella USTB01 by con-
structing a dynamic model described by differential equations and to predict the
growth status of Chlorella sp. USTB01 for longer culture time. The organization
of the paper is as follows.
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In Section 2, firstly, standard Chemostat models are introduced. Secondly, a
dynamic model governed by differential equations is proposed based on standard
Chemostat models and the experimental data obtained for heterotrophic culture of
Chlorella sp. USTB01. Thirdly, for the model, global existence and nonnegativity of
the solutions with appropriate initial conditions and classification of the equilibria
are discussed. In Section 3, local and global asymptotic stability of two classes of
the equilibria (i.e., Chlorella-free equilibrium and the equilibria for which Chlorella,
carbon sources and nitrogen sources are coexistent) of the model in Section 2 are
discussed by stability theory of differential equations. In Section 4, the parameters
in the model in Section 2 are determined according to the experimental data and
then numerical simulations are carried out. The numerical simulations suggest
the following interesting facts. (i) The trajectories of the model in Section 2 fit the
experimental data very well. (ii) Chlorella sp. UTSB01 is in the exponential growth
phase from 36 hours to 40 hours. (iii) If the culture time is extended to 60 hours,
the biomass of Chlorella sp. USTB01 in the culture vessel can reach at least 95%
of the theoretical biomass. The proofs of the main results in Section 3 are finally
given in Appendices A and B.

2. Dynamic model.

2.1. Chemostat models. Dynamical models which describe continuous culture of
microorganisms are also called Chemostat models (see, for example, [28]). Chemo-
stat models can be used to the researches on the growth of algae and plankton in
lakes and oceans, as well as the growth of endangered species (see, for example,
[4] and [28]). The standard Chemostat model with a single limiting resource and
a single microorganism is usually described by the following differential equations
(see, for example, [11] and [28]),{

Ṡ(t) = D(S0 − S)− δ−1µ(S)X,

Ẋ(t) = (µ(S)−D)X,
(1)

where S(t) and X(t) are the concentrations of the limiting resource (substrate) and
microorganism at time t, respectively. S0 > 0 denotes the concentration of input
limiting resource and is assumed to be constant. The constant D > 0 is the dilution
rate. The death rate of microorganism is assumed to be insignificant compared to
the dilution rate and is ignored. The function µ(S) denotes how X consumes S
and is called the uptake function. In most cases, µ(S) is chosen as Monod (1950)
function, that is µ(S) = µmS/(Km + S), where µm is the maximum growth rate of
microorganism, Km > 0 is the Michaelis-Menten (or half-saturation) constant. In
more general case, µ(S) is assumed to be a monotone function which satisfies the
conditions:

µ′(S) > 0(S > 0), µ(0) = 0, lim
S→∞

µ(S) = S̄ = const..

δ = δ(S) is called the yield coefficient with respect to the nutrient S. Usually, δ(S) is
chosen as constant or linear function of the nutrient S: δ(S) = AS+B, where A ≥ 0
and B > 0 are constants (see, for example, [4], [24], [28], [29] and the references
therein). Based on different biological meanings, the model (1) has been modified
and extended in the following aspects in recent years (see, for example, [1], [2], [5]
- [7], [11], [16], [17], [20], [24], [28], [29], [32] and the references therein): (i) The
models in which multiple microorganisms compete for single limiting resource, and
the dilution rates of microorganisms may be different; (ii) The models in which single



A MODEL DESCRIBING HETEROTROPHIC CULTURE OF CHLORELLA 1121

or multiple microorganisms compete for multiple resources, and the resources are
perfectly substitutable or perfectly complementary; (iii) The models in which uptake
functions are nonmonotone and the inhibiting effects of higher concentrations of
substrates to the growth of microorganism are considered; (iv) The models in which
there are time delays in the nutrients conversion processes; (v) The models in which
the effects of inhibitors (internal or external) on microbial competition (such as
plasmid-bearing, plasmid-free competition etc) are considered. (vi) The models
in which the input rates of limiting resources are not constants (such as periodic
functions of time t etc).

2.2. Dynamical model in the heterotrophic culture of Chlorella. Chlorella
sp. USTB01 ( Chlorella in short hereafter) has a strong ability in the utilization
of organic compounds and includes rich protein (see, for example, [36]). In this
subsection, based on the basic Chemostat model (1) and the experimental data in
[36] in the heterotrophic culture of Chlorella, a dynamical model is proposed.

Let us first look back the experimental procedures in [36]. (i) First, an appropri-
ate amount of Chlorella is added into the culture vessel which has definite volume
and is fed with an appropriate amount of carbon source and nitrogen source. (ii)
Then, after the beginning of the culture, an appropriate amount of carbon source
and nitrogen source are added into the culture vessel in batches (every 6 hours), and
the quantity of the carbon source and nitrogen source added are dependent on the
consumption of the carbon source and nitrogen source and the biomass of Chlorella
in the culture vessel. Furthermore, the quantity of the carbon source and nitrogen
source added every 6 hours is not less than the quantity added at the beginning
of the experiment, and proportional to the biomass of Chlorella in culture vessel
(see Fig 3). (iii) The culture time is limited 36 hours and the outflow of carbon
source, nitrogen source and Chlorella in the culture vessel are not considered. (iv)
The experimental data show that the mortality of Chlorella in the culture vessel
increases as the biomass of Chlorella increases (i.e., product inhibition). Hence, the
growth of Chlorella in the culture vessel is density-dependent.
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Figure 3. Total inflows and residuum of ammonium chloride and potassium
nitrate when carbon-to-nitrogen mass ratio is 20:1
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Let X(t), C(t) and N(t) denote the mass of Chlorella, carbon source and nitrogen
source, respectively, in the culture vessel at time t. We would point out here that,
for simplicity, it is assumed that input of carbon source and nitrogen source is
continuous. Hence, the dynamic model describing the growth of Chlorella in the
heterotrophic culture can be expressed as following,

Ẋ = θ1(rµ1(C)µ2(N)− d1 − fX)X,

Ċ = θ2(αX + a− d2C − X
δ1
r1µ1(C)µ2(N)),

Ṅ = θ3(βX + b− d3N − X
δ2
r2µ1(C)µ2(N)),

(2)

where the constant d1 > 0 is the mortality rate of Chlorella. The constants d2 > 0
and d3 > 0 are the attrition rates of carbon source and nitrogen source, respec-
tively. The term fX2 in which f > 0 is constant indicates that the growth
of Chlorella in the culture vessel is density-dependent. The terms αX and βX
in which α > 0 and β > 0 are constants indicate that the quantity of carbon
source and nitrogen source added every 6 hours are proportional to the biomass
of Chlorella in culture vessel, respectively. The constants a > 0 and b > 0 repre-
sent the constant input of carbon source and nitrogen source, respectively. Since
carbon source and nitrogen source are perfectly complementary in the culture of
Chlorella, the term rµ1(C)µ2(N) represents the growth rate of Chlorella, and the
terms r1µ1(C)µ2(N)X and r2µ1(C)µ2(N)X represent the quantity of decreasing of
carbon source and nitrogen source, respectively, where r > 0, r1 > 0 and r2 > 0
are constants, and the functions µ1(C) and µ2(N) are nonnegative and continuous
for C ≥ 0 and N ≥ 0. δi (i = 1, 2) are yield coefficients, which are defined as

δi =
mass of organism formed

mass of substrate consumed
(i = 1, 2).

The constants θ1 > 0, θ2 > 0 and θ3 > 0 are relative growth rates of Chlorella,
carbon source and nitrogen source, respectively.

For simplicity of theoretical analysis, in this paper, the functions µ1(C) and
µ2(N) are chosen as Monod type functions, i.e.,

µ1(C) =
C

k1 + C
, µ2(N) =

N

k2 +N
,

where k1 > 0 and k2 > are the half-saturation constants with respect to carbon
source and nitrogen source, respectively. The yield coefficients δ1 and δ2 are assumed
to be constants. Hence, without loss of generality, r1/δ1 and r2/δ2 are still denoted
by r1 and r2, respectively. Therefore, the dynamic model (2) can be rewritten in
the following simpler form,

Ẋ = θ1( rCN
(k1+C)(k2+N) − d1 − fX)X,

Ċ = θ2(αX + a− d2C − r1CNX
(k1+C)(k2+N) ),

Ṅ = θ3(βX + b− d3N − r2CNX
(k1+C)(k2+N) ).

(3)

2.3. Existence of equilibria. In this subsection, let us consider nonnegativity of
the solutions and existence of the equilibria of (3).

First, according to biological meanings, the initial condition of (3) is given as

X(0) = X0 ≥ 0, C(0) = C0 ≥ 0, N(0) = N0 ≥ 0, (4)

where the constants X0, C0 and N0 represent the initial mass of Chlorella, car-
bon source and nitrogen source, respectively. From Lemma 1 in Appendix B and
standard theory on existence of solutions of ordinary differential equations (see, for
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example, [9]), it can be easily shown that the solution (X(t), C(t), N(t)) of (3) with
the initial condition (4) is existent, unique and nonnegative for all t ≥ 0.

Let (X,C,N) be any equilibrium of (3). Then, (X,C,N) satisfies the following
nonlinear algebraic equations,

rCNX
(k1+C)(k2+N) − d1X − fX2 = 0,

αX + a− d2C − r1CNX
(k1+C)(k2+N) = 0,

βX + b− d3N − r2CNX
(k1+C)(k2+N) = 0.

(5)

There are two cases to be discussed.
(i) (3) always has the boundary equilibrium E0 = (X,C,N) = (0, a/d2, b/d3).

The existence of E0 indicates that, if there is no Chlorella to be added into the
culture vessel at the beginning of the culture, the concentrations of carbon source
and nitrogen source in the culture vessel always maintain the constants values a/d2

and b/d3, respectively. The equilibrium E0 is also called Chlorella-free equilibrium.
(ii) Let (X,C,N) be any equilibrium with X > 0, C > 0 and N > 0. From (5),

we have that 
(d1 + fX)(k1 + C)(k2 +N) = rCN,
C = 1

d2r
{ar − [(r1d1 − αr)X + r1fX

2]},
N = 1

d3r
{br − [(r2d1 − βr)X + r2fX

2]}.
(6)

Clearly, X should satisfy the conditions

ar − [(r1d1 − αr)X + r1fX
2] > 0 (7)

and

br − [(r2d1 − βr)X + r2fX
2] > 0. (8)

Substituting the second and the third equations of (6) into the first equation of (6)
gives a fifth order algebraic equation. Hence, under suitable conditions, there may
be at most five different positive roots for the fifth order algebraic equation. LetX =
X∗ be any such positive root which also satisfies the conditions (7) and (8). Then,
from (6), C = C∗ > 0 and N = N∗ > 0 can be obtained. Therefore, the dynamical
model (3) at most has five equilibria of the type of E∗ = (X,C,N) = (X∗, C∗, N∗)
with X∗ > 0, C∗ > 0 and N∗ > 0. The equilibrium E∗ = (X∗, C∗, N∗) is also called
positive equilibrium which indicates that Chlorella, carbon source and nitrogen
source are coexistent for any time t ≥ 0.

From the first equation in (6), we obtain the function

F (X) = (d1 + fX)(k1 + C)(k2 +N)− rCN
= fX(k1 + C)(k2 +N) + d1(k1k2 + k1N + k2C) + (d1 − r)CN,

which implies that d1 < r is a necessary condition for a positive equilibrium to
exist. In fact, E0 is globally asymptotically stable when d1 ≥ r (see Theorem 3.3
in Section 3 below).

General speaking, it is not easy to give a complete theoretical analysis for the ex-
istence of all the positive equilibria. But, according to the experiment data provided
in [36], the approximate estimations of all the positive equilibria can be obtained
by Matlab programming.

3. Stability analysis of equilibria. Stability analysis of the equilibria of the dy-
namic model (3) is very important for understanding the growth status of Chlorella.
In this section, some sufficient conditions are given to ensure global asymptotic sta-
bility of boundary equilibrium E0 = (0, a/d2, b/d3) and local asymptotic stability of
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the positive equilibrium E∗ = (X∗, C∗, N∗) by standard stability theory of ordinary
differential equations (see, for example, [9], [28]).

First of all, for local asymptotic stability of E0 = (0, a/d2, b/d3), we have the
following

Theorem 3.1. (i) If

d1 >
rab

(k1d2 + a)(k2d3 + b)

∆
= θ, (9)

then the boundary equilibrium E0 = (0, a/d2, b/d3) is locally asymptotically stable.
(ii) If d1 = θ, then the boundary equilibrium E0 = (0, a/d2, b/d3) is linear stable.
(iii) If d1 < θ, then the boundary equilibrium E0 = (0, a/d2, b/d3) is unstable.

The proof of Theorem 3.1 is given in Appendix A.

Remark 1. In view of the biological meanings of the parameters in (3) and the
condition (9), Theorem 3.1 indicates that the biomass of Chlorella may tend to zero
and the mass of carbon source and nitrogen source may tend to the constant values
a/d2 and b/d3, respectively, as time t increases, if one of the following two cases
occurs: (a) decreasing the value of the constant input rate a or b; (b) increasing
the value of the attrition rate d2 or d3 or the mortality rate d1. These cases are
reasonable, since they imply the insufficient sources for Chlorella to grow.

For local asymptotic stability of the positive equilibrium E∗ = (X∗, C∗, N∗) of
the dynamic model (3), we have the following

Theorem 3.2. If the positive equilibrium E∗ = (X∗, C∗, N∗) exists, and the con-
ditions

br + fr2X
∗2 − rd3N

∗ > 0, ar + fr1X
∗2 − rd2C

∗ > 0 (10)

hold, then E∗ = (X∗, C∗, N∗) is locally asymptotically stable.

The proof of Theorem 3.2 is also given in Appendix A.

Remark 2. Note that sufficient conditions for (10) to hold are a ≥ d2C
∗ and

b ≥ d3N
∗. Hence, for fixed constants a > 0 and b > 0, if the attrition rates d2

and d3 of carbon source and nitrogen source, respectively, are small enough and
the growth rate r of Chlorella is large enough, the conditions (7), (8) and (10) can
be satisfied. Therefore, it follows from Theorem 3.2 that the positive equilibrium
E∗ = (X∗, C∗, N∗) is locally asymptotically stable. This implies that Chlorella,
carbon source and nitrogen source in the culture vessel are coexistent and their
masses tend to constant values as time t increases.

Remark 3. There may exist multiple positive equilibria for the dynamical model
(3). Since complexity of the expression of the positive equilibrium E∗ = (X∗, C∗,
N∗), detailed theoretical and numerical analysis on multi stability are omitted. In
Section 4 below, according to the experimental data in [36], the parameters in the
dynamical model (3) are chosen, and then the value of the positive equilibrium E∗ =
(X∗, C∗, N∗) is computed numerically. Theorem 3.2 and numerical simulations
show that the positive equilibrium E∗ = (X∗, C∗, N∗) is asymptotically stable and
that the trajectories of the dynamical model (3) fit the trends of the experimental
data well.

From the point of view in both mathematics and biology, theoretical analysis on
global asymptotic stability of the equilibria of the dynamical model (3) has more
important significance. Global asymptotical stability of the equilibria E0 or E∗
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implies that the asymptotic properties of Chlorella, carbon source and nitrogen
source in culture vessel are not dependent on the initial values X0, C0 and N0 of
Chlorella, carbon source and nitrogen source.

For global asymptotically stability of the boundary equilibrium E0, we have the
following

Theorem 3.3. If d1 ≥ r, or d1 < r and

d1 ≥
r[af + α(r − d1)][bf + β(r − d1)]

[f(k1d2 + a) + α(r − d1)][f(k2d3 + b) + β(r − d1)]

∆
= θ̄, (11)

then, the boundary equilibrium E0 is globally asymptotically stable.

The proof of Theorem 3.3 is given in Appendix B.

Remark 4. The condition d1 ≥ θ̄ in Theorem 3.3 implies the condition d1 >
θ in Theorem 3.1. Furthermore, numerical simulations strongly suggest that the
boundary equilibrium E0 should also be globally asymptotically stable even if the
condition d1 ≥ θ holds. Therefore, the condition (11) in Theorem 3.3 may be further
improved.

As for global asymptotic stability of the positive equilibrium E∗, detailed discus-
sions shall be given in other paper.

4. Numerical simulations and discussions.

4.1. Numerical simulations. In this subsection, let us discuss how the trajecto-
ries of the dynamical model (3) fit the experimental data in [36] based on Theorem
3.2 and numerical simulations. To observe the growth status of Chlorella in the cul-
ture vessel, two sorts of nitrogen sources (i.e., ammonium chloride and potassium
nitrate) are used. Carbon source and nitrogen source are added into the culture
vessel for every 6 hours with two kinds of carbon-to-nitrogen mass ratios 20:1 and
10:1.

Case (I) Nitrogen source is ammonium chloride and carbon-to-nitrogen mass
ratio is 20:1. By suitable computations, we have from the experimental data in [36]
that the parameters in (3) can be chosen as follows,

r = 0.837, k1 = 5.926, k2 = 2.377, f = 0.002, α = 0.2703, a = 0.6545, β = 0.022,

b = 0.0476, r1 = 1.73, r2 = 0.14, θ1 = 1, θ2 = 1, θ3 = 1, d1 = d2 = d3 = 0.01.

It is easy to check that (3) has the positive equilibrium E∗ = (X∗, C∗, N∗) ≈
(62.5998, 8.2038, 0.9162), and that the condition (10) holds. Hence, we have from
Theorem 3.2 that the positive equilibrium E∗ is asymptotically stable. Fig.4 shows
that the trajectory of (3) obtained by the numerical simulation with the initial value
(X0, C0, N0) = (1.54, 0, 0) fits the experimental data in [36] well.

Case (II) Nitrogen source is potassium nitrate and carbon-to-nitrogen mass ratio
is 20:1. By the same computations as Case (I), the parameters in (3) can be chosen
as follows,

r = 0.21, k1 = 2.908, k2 = 0.287, f = 0.003, α = 0.2943, a = 0.5665, β = 0.0427,

b = 0.0824, r1 = 0.42, r2 = 0.06, θ1 = 0.9, θ2 = 1, θ3 = 1, d1 = d2 = d3 = 0.01.

(3) has the positive equilibrium E∗ = (X∗, C∗, N∗) ≈ (47.3691, 9.6855, 4.6436)
which is asymptotically stable. Fig.5 shows that the numerical simulation trajectory
of (3) with the initial value (X0, C0, N0) = (1.63, 0, 0) fits the experimental data in
[36] well.
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Figure 4. The experimental data and the trajectory of (3) when the nitrogen
source is ammonium chloride and carbon-to-nitrogen mass ratio is 20:1
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Figure 5. The experimental data and the trajectory of (3) when the nitrogen
source is potassium nitrate and carbon-to-nitrogen mass ratio is 20:1

Case (III) Nitrogen source is ammonium chloride and carbon-to-nitrogen mass
ratio is 10:1. The parameters in (3) can be chosen as follows,

r = 0.408, k1 = 5.168, k2 = 0.496, f = 0.003, α = 0.2501, a = 0.6324, β = 0.0409,

b = 0.0891, r1 = 0.575, r2 = 0.093, θ1 = 0.7, θ2 = 1, θ3 = 1, d1 = d2 = d3 = 0.01.

(3) has the positive equilibrium E∗ = (X∗, C∗, N∗) ≈ (58.1376, 6.2921, 2.3099)
which is asymptotically stable. Fig.6 shows that the numerical simulation trajectory
of (3) with the initial value (X0, C0, N0) = (1.57, 0, 0) fits the experimental data in
[36] well.

Case (IV) Nitrogen source is potassium nitrate and carbon-to-nitrogen mass ratio
is 10:1. The parameters in (3) can be chosen as follows,

r = 0.279, k1 = 6.819, k2 = 0.145, f = 0.003, α = 0.2925, a = 0.521, β = 0.0846,
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Figure 6. The experimental data and the trajectory of (3) when the nitrogen
source is ammonium chloride and carbon-to-nitrogen mass ratio is 10:1

b = 0.1539, r1 = 0.45, r2 = 0.13, θ1 = 0.8, θ2 = 0.6, θ3 = 0.8, d1 = d2 = d3 = 0.01.

(3) has the positive equilibrium E∗ = (X∗, C∗, N∗) ≈ (58.4398, 14.6835, 5.1652)
which is asymptotically stable. Fig.7 shows that the numerical simulation trajectory
of (3) with the initial value (X0, C0, N0) = (1.8, 0, 0) fits the experimental data in
[36] well.
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Figure 7. The experimental data and the trajectory of (3) when the nitrogen
source is potassium nitrate and carbon-to-nitrogen mass ratio is 10:1

4.2. Discussions. First, the numerical simulations show that the dynamic model
(3) can describe the growth status of Chlorella in the culture vessel in [36] very
well. The numerical simulations further suggest that, in the culture of Chlorella,
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the growth of Chlorella is in delay phase from 0 hour to 12 hours, in the accel-
erated phase from 12 hours to 24 hours, in exponential growth phase from 24
hours to 40 hours, and in deceleration phase from 40 hours to 60 hours. Fur-
thermore, we have from Fig.s 4-7 that, for Cases (I), (II), (III) and (IV) in Sub-
section 4.1, the saturated biomass of Chlorella are about X∗ ≈ 62.5998, X∗ ≈
47.3691 , X∗ ≈ 58.1376 and X∗ ≈ 58.4398, respectively. When the culture time
is limited 36 hours (see, for example, [36]), the experimental data shows that the
biomass of Chlorella in the culture vessel are approximately 53.51%(33.5/62.5998 ≈
0.5351), 56.15%(26.6/47.3691 ≈ 0.5615), 60.31%(35.06/58.1376≈ 0.6031) and 53.65
%(31.35/58.4399 ≈ 0.5365) of the saturated biomass, respectively. If the cul-
ture time is extended to 60 hours, the numerical simulations in Subsection 4.1
shows that the biomass of Chlorella are approximately 95.93% (60.05/62.5998 ≈
0.9593), 97.68% (46.27/47.3691 ≈ 0.9768), 97.56%(56.72/58.1376 ≈ 0.9756) and
97.62%(57.05/58.4399 ≈ 0.9762) of the saturated biomass, respectively.

Remark 5. The purpose of the paper is to model the growth of Chlorella USTB01
which have some special characteristics in applications and proposes an ordinary
differential equation model (3) according to the experimental procedures in [36].
The model (3) can be revised as the following more general form with time delays,

Ẋ(t) = θ1( re
−d1τC(t−τ)N(t−τ)X(t−τ)
(k1+C(t−τ))(k2+N(t−τ)) − d1X(t)− fX2(t)),

Ċ(t) = θ2(αX(t) + a− d2C(t)− r1C(t)N(t)X(t)
(k1+C(t))(k2+N(t)) + ρ1X(t− σ)),

Ṅ(t) = θ3(βX(t) + b− d3N(t)− r2C(t)N(t)X(t)
(k1+C(t))(k2+N(t)) + ρ2X(t− σ)).

(12)

In (12), the constants ρ1 ≥ 0 and ρ2 ≥ 0 are the rate constants at which carbon
source and nitrogen source are recycled because of the death of Chlorella. The
constant τ ≥ 0 denotes the time delay involved in the conversion of nutrients to
Chlorella. The constant σ ≥ 0 is a fixed time during which carbon source and
nitrogen source are released completely from dead Chlorella. The factor e−d1τ

represents the approximate proportion of Chlorella that remain in the culture vessel
during the conversion process.

Theoretical analysis on stability of the equilibria of (12) and its applications in
the research of the control strategies of algal toxins of blooms of the local lakes and
rivers in Beijing city shall be given in the other papers.

Appendix A. Analysis on local asymptotic stability.

Proof of Theorem 3.1. Without loss of generality, let us assume that θ1 = θ2 =
θ3 = 1. Let A = (aij)3×3 be the corresponding Jacobian matrix at any equilibrium
E(X,C,N) of the dynamical model (3). Then we easily have that

a11 =
rCN

(k1 + C)(k2 +N)
− d1 − 2fX, a12 =

rk1NX

(k1 + C)2(k2 +N)
,

a13 =
rk2CX

(k1 + C)(k2 +N)2
, a21 = α− r1CN

(k1 + C)(k2 +N)
,

a22 = −(d2 +
r1k1NX

(k1 + C)2(k2 +N)
), a23 = − r1k2CX

(k1 + C)(k2 +N)2
,

a31 = β − r2CN

(k1 + C)(k2 +N)
, a32 = − r2k1NX

(k1 + C)2(k2 +N)
,



A MODEL DESCRIBING HETEROTROPHIC CULTURE OF CHLORELLA 1129

a33 = −(d3 +
r2k2CX

(k1 + C)(k2 +N)2
).

At the boundary equilibrium E0, we have that a11 = θ − d1, a22 = −d2, a33 =
−d3, a12 = a13 = a23 = a32 = 0. Hence, the corresponding characteristic equation
is

|λE −A| = (λ+ d1 − θ)(λ+ d2)(λ+ d3) = 0,

and the corresponding characteristic roots are λ1 = −d1 + θ < 0, λ2 = −d2 < 0
and λ3 = −d3 < 0. This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. The corresponding characteristic equation at the positive
equilibrium E∗ = (X∗, C∗, N∗) can be expressed as the following form,

|λE −A| = λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = −(a11+a22+a33), a2 = a11a22+a11a33+a22a33−a12a21−a13a31−a23a32,
a3 = a11a23a32 + a12a21a33 + a13a31a22 − a11a22a33 − a12a23a31 − a13a21a32. Here,
the definition of aij is the same as that in the proof of Theorem 3.1, but E(X,C,N)
is replaced by E∗(X∗, C∗, N∗). Since

rC∗N∗

(k1 + C∗)(k2 +N∗)
= d1 + fX∗,

we have that

a11 =
rC∗N∗

(k1 + C∗)(k2 +N∗)
− d1 − 2fX∗ = −fX∗.

Hence,

a1 = fX∗ + d2 + d3 +
r1k1N

∗X∗

(k1 + C∗)2(k2 +N∗)
+

r2k2C
∗X∗

(k1 + C∗)(k2 +N∗)2
> 0,

a2 = fX∗d2 + fX∗d3 + d2d3 +
k1N

∗

(k1 + C∗)2(k2 +N∗)
A+

k2C
∗

(k1 + C∗)(k2 +N∗)2
B,

where

A =
rr1N

∗C∗X∗

(k1 + C∗)(k2 +N∗)
+ fr1(X∗)2 + d3r1X

∗ − αrX∗

= r(αX∗ + a− d2C
∗) + fr1(X∗)2 + d3r1X

∗ − αrX∗

= ar + fr1(X∗)2 + d3r1X
∗ − d2rC

∗ > 0,

B =
rr2N

∗C∗X∗

(k1 + C∗)(k2 +N∗)
+ fr2(X∗)2 + d2r2X

∗ − βrX∗

= r(βX∗ + b− d3N
∗) + fr2(X∗)2 + d2r2X

∗ − βrX∗

= br + fr2(X∗)2 + d2r2X
∗ − d3rN

∗ > 0.

Here, the assumptions in Theorem 3.2 and the following equalities

r1N
∗C∗X∗

(k1+C∗)(k2+N∗) = αX∗ + a− d2C
∗,

r2N
∗C∗X∗

(k1+C∗)(k2+N∗) = βX∗ + b− d3N
∗,

have been used. Hence, a2 > 0. Furthermore, we have that

a3 = fX∗d2d3 +
d2k2C

∗

(k1 + C∗)(k2 +N∗)2
F +

d3k1N
∗

(k1 + C∗)2(k2 +N∗)
H,
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where

F = r
r2N

∗C∗X∗

(k1 + C∗)(k2 +N∗)
+ fr2X

∗2 − βrX∗

= r(βX∗ + b− d3N
∗) + fr2X

∗2 − βrX∗

= br + fr2X
∗2 − rd3N

∗ > 0,

H = r
r1N

∗C∗X∗

(k1 + C∗)(k2 +N∗)
+ fr1X

∗2 − αrX∗

= r(αX∗ + a− d2C
∗) + fr1X

∗2 − αrX∗

= ar + fr1X
∗2 − rd2C

∗ > 0.

Hence, we have a3 > 0. In the following, let us show that a1a2− a3 > 0. In fact, we
have that

a1a2 − a3

> (fX∗ + d2 + d3){d2d3 +
k1N

∗

(k1 + C∗)2(k2 +N∗)
A+

k2C
∗

(k1 + C∗)(k2 +N∗)2
B}

−{fX∗d2d3 +
d2k2C

∗

(k1 + C∗)(k2 +N∗)2
F +

d3k1N
∗

(k1 + C∗)2(k2 +N∗)
H}

> fX∗d2d3 + d3
k1N

∗

(k1 + C∗)2(k2 +N∗)
A+ d2

k2C
∗

(k1 + C∗)(k2 +N∗)2
B

−{fX∗d2d3 +
d2k2C

∗

(k1 + C∗)(k2 +N∗)2
F +

d3k1N
∗

(k1 + C∗)2(k2 +N∗)
H}

= d3
k1N

∗

(k1 + C∗)2(k2 +N∗)
d3r1X

∗ + d2
k2C

∗

(k1 + C∗)(k2 +N∗)2
d2r2X

∗

> 0.

Hence, we have from Routh-Hurwitz criterion that the positive equilibrium E∗ is
locally asymptotically stable. This completes the proof of Theorem 3.2.

Appendix B. Global asymptotic stability of the equilibrium E0.
First of all, let us establish the following two lemmas.

Lemma 4.1. The solution (X(t), C(t), N(t)) of (3) with the initial condition (4) is
existent, unique and nonnegative for all t ≥ 0, and satisfies

(i) If r ≤ d1, then limt→+∞X(t) = 0, limt→+∞ C(t) = a/d2, limt→+∞N(t) =
b/d2.

(ii) If r > d1, then limt→+∞X(t) ≤ (r − d1)/f
∆
= M , and

lim sup
t→+∞

C(t) ≤ (αM + a)/d2
∆
= M1, lim sup

t→+∞
N(t) ≤ (βM + b)/d3

∆
= M2.

Proof. Let us assume that the solution (X(t), C(t), N(t)) is existent and unique
on [0, ρ) for some some ρ > 0. It can be easily shown that, for any t ∈ [0, ρ),
(X(t), C(t), N(t)) is nonnegative. In fact, since the first equation of (3) can been
written as the form,

Ẋ(t) = X(t)(
rC(t)N(t)

(k1 + C(t))(k2 +N(t))
− d1 − fX(t))

∆
= X(t)G(X(t), C(t), N(t)),
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we have that X(t) ≡ 0 for any t ∈ [0, ρ) if X0 = 0, and that X(t) > 0 for any
t ∈ [0, ρ) if X0 > 0. If there is a t2 ∈ [0, ρ) such that C(t2) = 0, we have from

the second equation of (3) that Ċ(t2) = αX(t2) + a > 0, which clearly implies that
C(t) ≥ 0 for any t ∈ [0, ρ). Similarly, we have that N(t) ≥ 0 for any t ∈ [0, ρ).

For t ∈ [0, ρ), we have that

Ẋ ≤ rX − d1X − fX2 = X(r − d1 − fX).

Consider the comparison system,

Ż = Z(r − d1 − fZ), Z(0) = X0.

Since the solution of the comparison system is existent and nonnegative for any
t ≥ 0, we have from comparison principle that X(t) ≤ Z(t) for any t ∈ [0, ρ). Thus,
X(t) ≤M0 for some positive constant M0 and all t ∈ [0, ρ). Therefore, for t ∈ [0, ρ),
we have from (3) that

Ċ ≤ αM0 + a− d2C, (13)

Ṅ ≤ βM0 + b− d3N. (14)

Again, we have from (13), (14) and comparison principle that C(t) and N(t) are
bounded for t ∈ [0, ρ). Hence, the solution (X(t), C(t), N(t)) can be continued to
+∞ and is unique and nonnegative.

Note that limt→+∞ Z(t) = 0 for r ≤ d1, and limt→+∞ Z(t) = M for r >
d1. Thus, we have from (13),(14) and comparison principle that, for r ≤ d1,
limt→+∞X(t) = 0, limt→+∞ C(t) = a/d2 and limt→+∞N(t) = b/d2; and that, for
r > d1, limt→+∞X(t) ≤ (r − d1)/f = M , lim supt→+∞ C(t) ≤ (αM + a)/d2 = M1

and lim supt→+∞N(t) ≤ (βM + b)/d3 = M2. This completes the proof of Lemma
4.1.

Lemma 4.2. The compact set

G = {(X,C,N) | 0 ≤ X ≤M, 0 ≤ C ≤M1, 0 ≤ N ≤M2}
attracts all the solutions of (3), and is positively invariant with respect to (3).

Proof. According to Lemma 4.1, it only needs to show that X(t) ≤M , C(t) ≤M1

and N(t) ≤ M2 for any t ≥ 0 and (X(0), C(0), N(0)) ∈ G. In fact, if there exits
some t3 > 0 such that X(t3) > M , then we have from the Lagrange mean-value

theorem that there is some t4 ∈ (0, t3) such that X(t4) > M and Ẋ(t4) > 0. On
the other hand, we have from (3) that

Ẋ(t4) = X(t4)(
rC(t4)N(t4)

(k1 + C(t4))(k2 +N(t4))
− d1 − fX(t4))

< X(t4)(r − d1 − fM) = 0,

which is a contradiction. Thus, X(t) ≤ M for any t ≥ 0. Therefore, we have from
(3) that for any t ≥ 0,

Ċ ≤ αM + a− d2C, Ṅ ≤ βM + b− d3N,

from which we easily have that C(t) ≤ M1 and N(t) ≤ M2 for any t ≥ 0. This
completes the proof of Lemma 4.2.

Proof of Theorem 3.3. If r ≤ d1, we have from Lemma 4.1 and Theorem 3.1 that the
non-Chlorella equilibrium E0 is globally asymptotically stable. Let us consider the
case of r > d1. Since the condition d1 ≥ θ̄ in Theorem 3.3 implies the condition d1 >
θ in Theorem 3.1, hence, the Chlorella-free equilibrium E0 is locally asymptotically
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stable. Consider the nonnegative function V = x on G. It is clear that V = x is
continuous on Ḡ and that the derivative along the solutions of (3) satisfies

V̇ = Ẋ =
rCNX

(k1 + C)(k2 +N)
− d1X − fX2

≤ X(
rM1M2

(k1 +M1)(k2 +M2)
− d1 − fX)

= X(θ̄ − d1 − fX) ≤ −fX2 ≤ 0.

Hence, V = x is a Liapunov function of (3) on G.

Define the subset of G as E = {(X,C,N)|(X,C,N) ∈ G, V̇ = 0}, and let H be
the largest invariant set of (3) in E. Since E0 ∈ H, we have that H is nonempty
and that E ⊆ {(X,C,N) ∈ G|X = 0}. From the invariance of H and (3), it is
easy to show that H = {E0}. Therefore, it follows from well known Lyapunov-
LaSalle invariance principle that E0 is globally attractive. This completes the proof
of Theorem 3.3.

Acknowledgments. We would like to thank the referees and Professor Sergei S.
Pilyugin very much for their valuable comments and suggestions.

REFERENCES

[1] E. Beretta and Y. Takeuchi, Qualitative properties of chemostat equations with time delays,

Diff. Equ. Dyn. Sys., 2 (1994), 19–40; 263–288.
[2] G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general

class of functions describing nutrient uptake, SIAM J. Appl. Math., 45 (1985), 138–151.

[3] F. Chen and Y. Jiang, “Microalgal Biotechnology,” Chinese Light Industry Press, Beijing,
1999.

[4] L. Chen, “Nonlinear Biological Dynamical Systems,” Science Press, Beijing, 1993.
[5] A. Cunningham and P. Maas, Time lag and nutrient storage effects in the transient growth

response of Chlamydomonas reinhardii in nitrogen-limited batch and continuous culture, J.

Gen. Microbiol., 104 (1978), 227–231.
[6] A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dy-

namics of microalgae, J. Theor. Biol., 84 (1980), 189–203.

[7] S. F. Ellermeyer, S. S. Pilyugin and Ray Redheffer, Persistence criteria for a chemostat with
variable nutrient input, J. Diff. Eq., 171 (2001), 132–147.

[8] H. Endo, H. Hosoya and T. Koibuchi, Growth yields of Chlorella regularis in dark-
heterotrophic continuous cultures using acetate, J. Ferment. Technol., 55 (1977), 369–379.

[9] J. K. Hale, “Ordinary Differential Equations,” Second edition, Robert E. Krieger Publishing

Company, Inc., Huntington, New York, 1980.

[10] S. Han, Z. Zhang and H. Liu, Effects of Chlorella growth factor on physiological function,
Chinese J. Biochem. Pharmaceutics, 25 (2004), 5–7.

[11] S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement
between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491–1493.

[12] F. Khacik, Process for isolation, purification, and recrystallization of lutein from saponified

marigold oleoresin and uses thereof: US patent, 5382714, 1995-01-17.
[13] J. T. Landrum and R. A. Bone, Lutein, zeaxanthin, and the macular pigment , Arch. Biochem.

Biophys., 385 (2001), 28–40.

[14] J. A. Leon and D. B. Tumpson, Competition between two species for two complementary or
substitutable resources, J. Theor. Biol., 50 (1975), 185–201.

[15] L. W. Levy, Trans-xanthophyll ester concentrates of enhanced purity and method of making

same: US patent, 6191293, 2001-02-20.
[16] B. Li, G. S. K. Wolkowicz and Y. Kuang, Global asymptotic behavior of a Chemostat model

with two perfectly complementary resources and distributed delay, SIAM J. Appl. Math., 60

(2000), 2058–2086.
[17] B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with

internal storage, J. Math. Biol., 55 (2007), 481–515.

http://www.ams.org/mathscinet-getitem?mr=MR0775486&return=pdf
http://dx.doi.org/10.1137/0145006
http://dx.doi.org/10.1137/0145006
http://dx.doi.org/10.1016/S0022-5193(80)80003-8
http://dx.doi.org/10.1016/S0022-5193(80)80003-8
http://www.ams.org/mathscinet-getitem?mr=MR1816797&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0587488&return=pdf
http://dx.doi.org/10.1126/science.6767274
http://dx.doi.org/10.1126/science.6767274
http://dx.doi.org/10.1006/abbi.2000.2171
http://dx.doi.org/10.1016/0022-5193(75)90032-6
http://dx.doi.org/10.1016/0022-5193(75)90032-6
http://www.ams.org/mathscinet-getitem?mr=MR1763316&return=pdf
http://dx.doi.org/10.1137/S0036139999359756
http://dx.doi.org/10.1137/S0036139999359756
http://www.ams.org/mathscinet-getitem?mr=MR2336451&return=pdf
http://dx.doi.org/10.1007/s00285-007-0092-8
http://dx.doi.org/10.1007/s00285-007-0092-8


A MODEL DESCRIBING HETEROTROPHIC CULTURE OF CHLORELLA 1133

[18] S. Liu, H. Meng, S. Liang, J. Yin and P. Mai, High-density heterotrophic culture of Chlorella
Vulgaris in bioreactor, J. South China Univ. Tech., 28 (2000), 81–86.

[19] D. L. Madhavi and D. I. Kagan, Process for the isolation of mixed carotenoids from plants:

US patent, 6380442, 2002-04-30.
[20] A. Narang and S. S. Pilyugin, Towards an integrated physiological theory of microbial growth:

From subcellular variables to population dynamics, Math. Biosci. Eng., 2 (2005), 169–206.
[21] J. C. Ogbonna, H. Masui and H. Tanaka, Sequential heterotrophic / autotrophic cultivation -

An efficient method of producing Chlorella biomass for health food and animal feed , J. Appl.

Phycol., 9 (1997), 359–366.
[22] J. C. Ogbonna, S. Tomiyama and H. Tanaka, Heterotrophic cultivation of Euglena gracilis Z

for efficient production of α-tocopherol , J. Appl. Phycol., 10 (1998), 67–74.

[23] T. Philip, Purification of lutein-fatty acid esters from plant materials: US patent, 4048203,
1977-09-13.

[24] S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield ,

Math. Biosci., 182 (2003), 151–166.
[25] K. Sasaki, K. Watanabe, T. Tanaka, Y. Hotta and S. Nagai, 5-aminolevulinic acid production

by Chlorella sp. during heterotrophic cultivation in the dark , World J. Microbiol. Biotech.,

11 (1995), 361–362.
[26] X. Shi, H. Liu, X. Zhang and F. Chen, Production of biomass and lutein by Chlorella pro-

tothecoides at various glucose concentrations in heterotrophic cultures, Process Biochem., 34
(1999), 341–347.

[27] X. Shi, X. Zhang and F. Chen, Heterotrophic production of biomass and lutein Chlorella

protothecoides on various nitrogen sources, Enzyme Microb. Technol., 27 (2000), 312–318.
[28] H. L. Smith and P. Waltman, “The Theory of the Chemostat. Dynamics of Microbial Compe-

tition,” Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cam-

bridge, 1995.
[29] H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture:

The variable-yield model , SIAM J. Appl. Math., 54 (1994), 1113–1131.

[30] L. V. Thinh and D. J. Griffiths, Amino-acid composition of autotrophic and heterotrophic
cultures of emerson strain of Chlorella, Plant Cell Physiol., 17 (1976), 193–196.

[31] S. Wang, H. Yan, B. Zhang, L. Lv and H. Lin, Effects of various nitrogen sources and

phytohormones on growth and content of lutin in Chlorella sp. USTB01, Sci. Tech. Review,
23 (2005), 37–40.

[32] H. Xia, G. S. K. Wolkowicz and L. Wang, Transient oscillation induced by delayed growth
response in the chemostat , J. Math. Biol., 50 (2005), 489–530.

[33] K. Yamaguchi, Recent advances in microalgal bioscience in Japan, with special reference to

utilization of biomass and metabolites: A review , J. Appl. Phycol., 8 (1996), 487–502.
[34] H. Yan, C. Ye and C. Yin, Kinetics of phthalate esters biodegradation by Chlorella pyrenoi-

dosa, Environ. Toxicol. Chem., 14 (1995), 931–938.
[35] H. Yan and G. Pan, Toxicity and bioaccumulation of copper in three green microalgal species,

Chemosphere, 49 (2002),471–476.

[36] H. Yan, J. Zhou, H. He, Y. Wei and J. Sun, Isolation and heterotrophic culture of Chlorella

sp., J. Univ. Sci. Tech. Beijing, 27 (2005), 408–412.
[37] H. Yan, B. Zhang, S. Wang, Y. Li, S. Liu and S. Yang, Advances in the heterotrophic culture

of Chlorella sp., Modern Chem. Indust., 27 (2007), 18–21.
[38] H. Zhang, S. Sun, K. Mai and Y. Liang, Advances in the studies on heterotrophic culture of

microalgae, Trans. Oceanology Limnology, (2000), 51–59.

[39] L. Zhang, R. Yang and H. Xiao, The heterotrophic culture of Chlorella and the optimization

of growth condition, Guihaia, 24 (2001), 353–357.
[40] H. Zhou, W. Lin and T. Chen, The heterotrophy and applications of Chlorella, Amino Acids

Biotic Resources, 27 (2005), 69–73.

Received October 12, 2009; Accepted October 23, 2010.

E-mail address: zhangyan850114@163.com

E-mail address: wanbiao−ma@ustb.edu.cn

E-mail address: haiyan@sas.ustb.edu.cn

E-mail address: takeuchi@sys.eng.shizuoka.ac.jp

http://www.ams.org/mathscinet-getitem?mr=MR2130757&return=pdf
http://dx.doi.org/10.1023/A:1007981930676
http://dx.doi.org/10.1023/A:1007981930676
http://dx.doi.org/10.1023/A:1008011201437
http://dx.doi.org/10.1023/A:1008011201437
http://www.ams.org/mathscinet-getitem?mr=MR1965353&return=pdf
http://dx.doi.org/10.1016/S0025-5564(02)00214-6
http://dx.doi.org/10.1007/BF00367123
http://dx.doi.org/10.1007/BF00367123
http://dx.doi.org/10.1016/S0032-9592(98)00101-0
http://dx.doi.org/10.1016/S0032-9592(98)00101-0
http://dx.doi.org/10.1016/S0141-0229(00)00208-8
http://dx.doi.org/10.1016/S0141-0229(00)00208-8
http://www.ams.org/mathscinet-getitem?mr=MR1315301&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1284704&return=pdf
http://dx.doi.org/10.1137/S0036139993245344
http://dx.doi.org/10.1137/S0036139993245344
http://www.ams.org/mathscinet-getitem?mr=MR2146435&return=pdf
http://dx.doi.org/10.1007/s00285-004-0311-5
http://dx.doi.org/10.1007/s00285-004-0311-5
http://dx.doi.org/10.1007/BF02186327
http://dx.doi.org/10.1007/BF02186327
http://dx.doi.org/10.1016/S0045-6535(02)00285-0
mailto:zhangyan850114@163.com
mailto:wanbiao$_-$ma@ustb.edu.cn
mailto:haiyan@sas.ustb.edu.cn
mailto:takeuchi@sys.eng.shizuoka.ac.jp

	1. Introduction
	1.1. Culture of Chlorella
	1.2. Heterotrophic culture of Chlorella sp. USTB01

	2. Dynamic model
	2.1. Chemostat models
	2.2. Dynamical model in the heterotrophic culture of Chlorella
	2.3. Existence of equilibria

	3. Stability analysis of equilibria
	4. Numerical simulations and discussions
	4.1. Numerical simulations
	4.2. Discussions

	Acknowledgments
	REFERENCES

