This study explores the use of numerical simulations to model the spread of the Omicron variant of the SARS-CoV-2 virus using fractional-order COVID-19 models and Haar wavelet collocation methods. The fractional order COVID-19 model considers various factors that affect the virus's transmission, and the Haar wavelet collocation method offers a precise and efficient solution to the fractional derivatives used in the model. The simulation results yield crucial insights into the Omicron variant's spread, providing valuable information to public health policies and strategies designed to mitigate its impact. This study marks a significant advancement in comprehending the COVID-19 pandemic's dynamics and the emergence of its variants. The COVID-19 epidemic model is reworked utilizing fractional derivatives in the Caputo sense, and the model's existence and uniqueness are established by considering fixed point theory results. Sensitivity analysis is conducted on the model to identify the parameter with the highest sensitivity. For numerical treatment and simulations, we apply the Haar wavelet collocation method. Parameter estimation for the recorded COVID-19 cases in India from 13 July 2021 to 25 August 2021 has been presented.
Citation: Rahat Zarin, Usa Wannasingha Humphries, Amir Khan, Aeshah A. Raezah. Computational modeling of fractional COVID-19 model by Haar wavelet collocation Methods with real data[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11281-11312. doi: 10.3934/mbe.2023500
[1] | Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031 |
[2] | Angaraj Singh, Ajitanshu Vedrtnam, Kishor Kalauni, Aman Singh, Magdalena Wdowin . Synthesis routes of zeolitic imidazolate framework-8 for CO2 capture: A review. AIMS Materials Science, 2025, 12(1): 118-164. doi: 10.3934/matersci.2025009 |
[3] | Laís Weber Aguiar, Cleiser Thiago Pereira da Silva, Hugo Henrique Carline de Lima, Murilo Pereira Moises, Andrelson Wellington Rinaldi . Evaluation of the synthetic methods for preparing metal organic frameworks with transition metals. AIMS Materials Science, 2018, 5(3): 467-478. doi: 10.3934/matersci.2018.3.467 |
[4] | Jamal Alnofiay, Ahmed Al-Shahrie, Elsayed Shalaan . Green synthesis of high-performance gallium oxide supercapacitor: A path to outstanding energy density. AIMS Materials Science, 2024, 11(6): 1065-1082. doi: 10.3934/matersci.2024051 |
[5] | Akira Nishimura, Tadaki Inoue, Yoshito Sakakibara, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum molar ratio of H2 and H2O to reduce CO2 using Pd/TiO2. AIMS Materials Science, 2019, 6(4): 464-483. doi: 10.3934/matersci.2019.4.464 |
[6] | Akira Nishimura, Ryuki Toyoda, Daichi Tatematsu, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum reductants ratio for CO2 reduction by overlapped Cu/TiO2. AIMS Materials Science, 2019, 6(2): 214-233. doi: 10.3934/matersci.2019.2.214 |
[7] | Masatoshi Sakairi, Hirotaka Mizukami, Shuji Hashizume . Effects of solution composition on corrosion behavior of 13 mass% Cr martensitic stainless steel in simulated oil and gas environments. AIMS Materials Science, 2019, 6(2): 288-300. doi: 10.3934/matersci.2019.2.288 |
[8] | Pravina Kamini G., Kong Fah Tee, Jolius Gimbun, Siew Choo Chin . Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties. AIMS Materials Science, 2023, 10(3): 405-425. doi: 10.3934/matersci.2023022 |
[9] | Toni Varila, Henrik Romar, Tero Luukkonen, Ulla Lassi . Physical activation and characterization of tannin-based foams enforced with boric acid and zinc chloride. AIMS Materials Science, 2019, 6(2): 301-314. doi: 10.3934/matersci.2019.2.301 |
[10] | Endi Suhendi, Andini Eka Putri, Muhamad Taufik Ulhakim, Andhy Setiawan, Syarif Dani Gustaman . Investigation of ZnO doping on LaFeO3/Fe2O3 prepared from yarosite mineral extraction for ethanol gas sensor applications. AIMS Materials Science, 2022, 9(1): 105-118. doi: 10.3934/matersci.2022007 |
This study explores the use of numerical simulations to model the spread of the Omicron variant of the SARS-CoV-2 virus using fractional-order COVID-19 models and Haar wavelet collocation methods. The fractional order COVID-19 model considers various factors that affect the virus's transmission, and the Haar wavelet collocation method offers a precise and efficient solution to the fractional derivatives used in the model. The simulation results yield crucial insights into the Omicron variant's spread, providing valuable information to public health policies and strategies designed to mitigate its impact. This study marks a significant advancement in comprehending the COVID-19 pandemic's dynamics and the emergence of its variants. The COVID-19 epidemic model is reworked utilizing fractional derivatives in the Caputo sense, and the model's existence and uniqueness are established by considering fixed point theory results. Sensitivity analysis is conducted on the model to identify the parameter with the highest sensitivity. For numerical treatment and simulations, we apply the Haar wavelet collocation method. Parameter estimation for the recorded COVID-19 cases in India from 13 July 2021 to 25 August 2021 has been presented.
Metal--organic materials (MOMs) are a class of synthesized, often porous, and crystalline materials that have comprised the focus of a large amount of experimental and theoretical studies for the past few decades [1,2,3]. The application of MOMs is very diverse and has become essentially ubiquitous in scientific research, ranging from gas sorption [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], separation [4,18,19], catalysis [20,21,22,23], sensing [24,25], photoinduced electron transfer [26,27,28,29] and biological uses [30,31]. The major reason for this is that there are conceivably infinite variations of MOM structures that can be synthesized by altering their component metal ions, organic linkers, secondary building units (SBUs) [32,33], solvents, and thermodynamic or physical conditions.
This study focuses on explaining the sorption properties of CO
Recent studies involved examining C
The syntheses of MPM-1-Cl and MPM-1-Br are reported in references [38,39], respectively. Both MPMs feature an interesting hydrogen-bonding network in which (1) four hydrogen atoms from four different adenine linkers are hydrogen-bonded to a single halide ion and (2) an adenine linker from one [Cu
The purpose of this study is to elucidate (with atomistic resolution) the sorption properties of CO
The potential energy function for MPM-1-Cl was developed by our group in previous work [41] and utilized herein. The crystal structure for MPM-1-Br was obtained from reference [39]. For all simulations in both MPMs, the sorbent atoms were treated as rigid to accomodate a constant volume ensemble system. This approximation is especially valid when phononic effects are minor [43]. As with previous work on MPM-1-Cl [41], all atoms of MPM-1-Br were given Lennard-Jones 12--6 parameters, point partial charges, and scalar point polarizabilities to model repulsion/dispersion, stationary electrostatic, and explicit polarization, respectively. The Lennard-Jones parameters for all MPM atoms were taken from the Universal Force Field (UFF)[44], while the exponentially-damped polarizabilities for all atoms other than Cu were obtained from van Duijnen et al. [45]. The polarizability parameter for Cu
The potentials used for CO
Simulated annealing calculations were performed using the polarizable CO
C
Interestingly, the relative uptake trend is reversed at 298 K: MPM-1-Br shows slightly greater affinity for C
Xie et al. also measured CO
Xie et al. [37] derived the experimental
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
With regards to C
The
The experimental and simulated C
Figure 5a shows the simulated C
As shown in Table 1, the experimental C
The simulated C
The theoretical
The simulated CO
The CO
A comparison of the experimental and simulated CO
As shown in Table 1, the experimental atmospheric CO
Note, we also performed simulations of CO
The simulated CO
In MPM-1-Br, the
The calculated
Pham et al. [41] reported a binding site for CO
The electrostatic and electrodynamic (polarizable) effects serve to attract the positively charged carbon center of the CO
MPM-1-Cl is able to sorb more CO
The primary binding site for C
Overall, there are more concurrent interactions between the C
The results for the classical binding energy calculations from simulated annealing are presented in Table 2. It is clear from these simulations that both materials favor C
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |
This study aimed to elucidate the CO
It was discovered through our simulations that the primary binding site for C
Herein, we demonstrated how substitution of the halide ion in two isostructural MPMs with the empirical formula [Cu
The authors acknowledge the National Science Foundation (Award No. DMR-1607989), including support from the Major Research Instrumentation Program (Award No. CHE-1531590). Computational resources were made available by a XSEDE Grant (No. TG-DMR090028) and by Research Computing at the University of South Florida. B.S. also acknowledges support from an American Chemical Society Petroleum Research Fund grant (ACS PRF 56673-ND6).
The authors declare no conflict of interest related to the content of this publication.
[1] | A. S. Omrani, J. A. Al-Tawfiq, Z. A. Memish, Middle east respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction, pathogens and global health, 109 (2015), 354–362. https://doi.org/10.1080/20477724.2015.1122852 |
[2] | World Health Organization, Weekly epidemiological update on COVID-19–-11 January 2023, 2023. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-11-january-2023 |
[3] |
M. Z. Tay, C. M. Poh, L. Rénia, P. A. MacAry, L. F. Ng, The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol., 20 (2020), 363–374. https://doi.org/10.1038/s41577-020-0311-8 doi: 10.1038/s41577-020-0311-8
![]() |
[4] |
I. Owusu-Mensah, L. Akinyemi, B. Oduro, O. S. Iyiola, A fractional order approach to modeling and simulations of the novel COVID-19, Adv. Differ. Equations, 1 (2020), 1–21. https://doi.org/10.1186/s13662-020-03141-7 doi: 10.1186/s13662-020-03141-7
![]() |
[5] |
E. Iboi, A. Richardson, R. Ruffin, D. Ingram, J. Clark, J. Hawkins, et al., Impact of public health education program on the novel coronavirus outbreak in the United States, Front. Public Health, 9 (2021), 630974. https://doi.org/10.3389/fpubh.2021.630974 doi: 10.3389/fpubh.2021.630974
![]() |
[6] |
S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, et al., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic, Infec. Dis. Modell., 5 (2020), 293–308. https://doi.org/10.1016/j.idm.2020.04.001 doi: 10.1016/j.idm.2020.04.001
![]() |
[7] |
A. Khan, R. Zarin, G. Hussain, N. A. Ahmad, M. H. Mohd, A. Yusuf, Stability analysis and optimal control of covid-19 with convex incidence rate in Khyber Pakhtunkhawa (Pakistan), Results Phys., 20 (2021), 103703. https://doi.org/10.1016/j.rinp.2020.103703 doi: 10.1016/j.rinp.2020.103703
![]() |
[8] |
P. Veeresha, L. Akinyemi, Fractional approach for mathematical model of Phytoplankton–toxic phytoplankton–zooplankton system with Mittag-Leffler kernel, Int. J. Biomath., 16 (2023), 2250090. https://doi.org/10.1142/S1793524522500905 doi: 10.1142/S1793524522500905
![]() |
[9] |
Z. U. A. Zafar, M. Inc, F. Tchier, L. Akinyemi, Stochastic suicide substrate reaction model, Phys. A, 610 (2023), 128384. https://doi.org/10.1016/j.physa.2022.128384 doi: 10.1016/j.physa.2022.128384
![]() |
[10] |
S. J. Achar, C. Baishya, P. Veeresha, L. Akinyemi, Dynamics of fractional model of biological pest control in tea plants with Beddington–DeAngelis functional response, Fractal Fractional, 6 (2021), 1. https://doi.org/10.3390/fractalfract6010001 doi: 10.3390/fractalfract6010001
![]() |
[11] |
A. Khan, R. Zarin, U. W. Humphries, A. Akgül, A. Saeed, T. Gul, Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function, Adv. Differ. Equations, 1 (2021), 1–22. https://doi.org/10.1186/s13662-021-03546-y doi: 10.1186/s13662-021-03546-y
![]() |
[12] |
M. S. Alqarni, M. Alghamdi, T. Muhammad, A. S. Alshomrani, M. A. Khan, Mathematical modeling for novel coronavirus (COVID-19) and control, Numer. Methods Partial Differ. Equations, 38 (2022), 760–776. https://doi.org/10.1002/num.22695 doi: 10.1002/num.22695
![]() |
[13] |
A. Khan, R. Zarin, S. Khan, A. Saeed, T. Gul, U. W. Humphries, Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate, Comput. Methods Biomech. Biomed. Eng., 25 (2022), 619–640. https://doi.org/10.1080/10255842.2021.1972096 doi: 10.1080/10255842.2021.1972096
![]() |
[14] |
T. Krueger, K. Gogolewski, M. Bodych, A. Gambin, G. Giordano, S. Cuschieri, et al., Risk assessment of COVID-19 epidemic resurgence in relation to SARS-CoV-2 variants and vaccination passes, Commun. Med., 2 (2022), 23. https://doi.org/10.1038/s43856-022-00084-w doi: 10.1038/s43856-022-00084-w
![]() |
[15] |
A. Calero-Valdez, E. N. Iftekhar, M. Oliu-Barton, R. Böhm, S. Cuschieri, T. Czypionka, et al., Europe must come together to confront omicron, BMJ, 376 (2022), o90. https://doi.org/10.1136/bmj.o90 doi: 10.1136/bmj.o90
![]() |
[16] |
R. Markovič, M. Šterk, M. Marhl, M. Perc, M. Gosak, Socio-demographic and health factors drive the epidemic progression and should guide vaccination strategies for best COVID-19 containment, Results Phys., 26 (2021), 104433. https://doi.org/10.1016/j.rinp.2021.104433 doi: 10.1016/j.rinp.2021.104433
![]() |
[17] |
M. Goyal, H. M. Baskonus, A. Prakash, An efficient technique for a time fractional model of lassa hemorrhagic fever spreading in pregnant women, Eur. Phys. J. Plus, 134 (2019), 482. https://doi.org/10.1140/epjp/i2019-12854-0 doi: 10.1140/epjp/i2019-12854-0
![]() |
[18] |
W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, G. Yel, New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function, Chaos Solitons Fractals, 134 (2020), 109696. https://doi.org/10.1016/j.chaos.2020.109696 doi: 10.1016/j.chaos.2020.109696
![]() |
[19] |
R. T. Alqahtani, S. Ahmad, A. Akgül, Dynamical analysis of bio-ethanol production model under generalized nonlocal operator in Caputo sense, Mathematics, 9 (2021), 2370. https://doi.org/10.3390/math9192370 doi: 10.3390/math9192370
![]() |
[20] |
P. Agarwal, R. Singh, Modelling of transmission dynamics of Nipah virus (Niv): A fractional order approach, Phys. A, 547 (2020), 124243. https://doi.org/10.1016/j.physa.2020.124243 doi: 10.1016/j.physa.2020.124243
![]() |
[21] | R. Zarin, A. Khan, A. Yusuf, S. Abdel-Khalek, M. Inc, Analysis of fractional COVID-19 epidemic model under Caputo operator, Math. Methods Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7294 |
[22] |
R. Zarin, A. Khan, P. Kumar, Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators, AIMS Math., 7 (2022), 18897–18924. https://doi.org/10.3934/math.20221041 doi: 10.3934/math.20221041
![]() |
[23] |
D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360
![]() |
[24] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fractional Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[25] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, preprint, arXiv: 1602.03408. |
[26] | P. Agarwal, J. Choi, R. B. Paris, Extended Riemann-Liouville fractional derivative operator and its applications, J. Sci. Appl., 8 (2015), 451–466. |
[27] |
R. Zarin, A. Khan, M. Inc, U. W. Humphries, T. Karite, Dynamics of five grade leishmania epidemic model using fractional operator with Mittag–Leffler kernel, Chaos Solitons Fractals, 147 (2021), 110985. https://doi.org/10.1016/j.chaos.2021.110985 doi: 10.1016/j.chaos.2021.110985
![]() |
[28] |
P. Agarwal, J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc., 53 (2016), 1183–1210. https://doi.org/10.4134/JKMS.j150458 doi: 10.4134/JKMS.j150458
![]() |
[29] |
A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A, 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
![]() |
[30] |
D. Kumar, J. Singh, D. Baleanu, A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel, Eur. Phys. J. Plus, 133 (2018), 1–10. https://doi.org/10.1140/epjp/i2018-11934-y doi: 10.1140/epjp/i2018-11934-y
![]() |
[31] |
D. Kumar, J. Singh, S. D. Purohit, R. Swroop, A hybrid analytical algorithm for nonlinear fractional wave-like equations, Math. Modell. Nat. Phenom., 14 (2019), 304. https://doi.org/10.1051/mmnp/2018063 doi: 10.1051/mmnp/2018063
![]() |
[32] |
P. Liu, X. Huang, R. Zarin, T. Cui, A. Din, Modeling and numerical analysis of a fractional order model for dual variants of SARS-CoV-2, Alexandria Eng. J., 65 (2023), 427–442. https://doi.org/10.1016/j.aej.2022.10.025 doi: 10.1016/j.aej.2022.10.025
![]() |
[33] |
R. Zarin, I. Ahmed, P. Kumam, A. Zeb, A. Din, Fractional modeling and optimal control analysis of rabies virus under the convex incidence rate, Results Phys., 28 (2021), 104665. https://doi.org/10.1016/j.rinp.2021.104665 doi: 10.1016/j.rinp.2021.104665
![]() |
[34] |
A. Atangana, A novel Covid-19 model with fractional differential operators with singular and non-singular kernels: Analysis and numerical scheme based on Newton polynomial, Alexandria Eng. J., 60 (2021), 3781–3806. https://doi.org/10.1016/j.aej.2021.02.016 doi: 10.1016/j.aej.2021.02.016
![]() |
[35] |
M. U. Rahman, M. Arfan, W. Deebani, P. Kumam, Z. Shah, Analysis of time-fractional Kawahara equation under Mittag-Leffler Power Law, Fractals, 30 (2022), 2240021. https://doi.org/10.1142/S0218348X22400461 doi: 10.1142/S0218348X22400461
![]() |
[36] |
K. Bansal, S. Arora, K. S. Pritam, T. Mathur, S. Agarwal, Dynamics of crime transmission using fractional-order differential equations, Fractals, 30 (2022), 2250012. https://doi.org/10.1142/S0218348X22500128 doi: 10.1142/S0218348X22500128
![]() |
[37] |
K. S. Pritam, T. Mathur, S. Agarwal, Underlying dynamics of crime transmission with memory, Chaos Solitons Fractals, 146 (2021), 110838. https://doi.org/10.1016/j.chaos.2021.110838 doi: 10.1016/j.chaos.2021.110838
![]() |
[38] |
M. Partohaghighi, V. Kumar, A. Akgül, Comparative study of the fractional-order crime system as a social epidemic of the USA scenario, Int. J. Appl. Comput. Math., 8 (2022), 1–17. https://doi.org/10.1007/s40819-022-01399-x doi: 10.1007/s40819-022-01399-x
![]() |
[39] |
M. U. Rahman, S. Ahmad, M. Arfan, A. Akgül, F. Jarad, Fractional order mathematical model of serial killing with different choices of control strategy, Fractal Fractional, 6 (2022), 162. https://doi.org/10.3390/fractalfract6030162 doi: 10.3390/fractalfract6030162
![]() |
[40] | S. Zhi, L. Y. Deng, J. C. Qing, Numerical solution of differential equations by using Haar wavelets, in Proceeding of the International Conference on Wavelet Analysis and Pattern Recognition, (2007), 1037–1044. https://doi.org/10.1109/ICWAPR.2007.4421585 |
[41] |
K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, A. Khan, Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative, Alexandria Eng. J., 59 (2020), 3221–3231. https://doi.org/10.1016/j.aej.2020.08.028 doi: 10.1016/j.aej.2020.08.028
![]() |
[42] |
B. Prakash, A. Setia, D. Alapatt, Numerical solution of nonlinear fractional SEIR epidemic model by using Haar wavelets, J. Comput. Sci., 22 (2017), 109–118. https://doi.org/10.1016/j.jocs.2017.09.001 doi: 10.1016/j.jocs.2017.09.001
![]() |
[43] |
D. Kumar, R. P. Agarwal, J. Singh, A modified numerical scheme and convergence analysis for fractional model of Lienard's equation, J. Comput. Appl. Math., 339 (2018), 405–413. https://doi.org/10.1016/j.cam.2017.03.011 doi: 10.1016/j.cam.2017.03.011
![]() |
[44] |
A. Goswami, J. Singh, D. Kumar, An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma, Phys. A, 524 (2019), 563–575. https://doi.org/10.1016/j.physa.2019.04.058 doi: 10.1016/j.physa.2019.04.058
![]() |
[45] |
M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91 (1971), 134–147. https://doi.org/10.1007/BF00879562 doi: 10.1007/BF00879562
![]() |
[46] |
Y. Chen, M. Yi, C. Yu, Error analysis for numerical solution of fractional differential equation by Haar wavelets method, J. Comput. Sci., 3 (2012), 367–373. https://doi.org/10.1016/j.jocs.2012.04.008 doi: 10.1016/j.jocs.2012.04.008
![]() |
[47] | Ü. Lepik, H. Hein, Haar wavelets, in Haar Wavelets, Springer, 2014. https://doi.org/10.1007/978-3-319-04295-4 |
[48] |
P. Van den Driessche, J. Watmough, Reproduction number and sub-threshold endemic equilbria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–38. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[49] | A. E. Taylor, D. C. Lay, Introduction to Functional Analysis, CRC Press, 1958. |
[50] | World Health Organization, https://www.who.int/countries/ind/. |
[51] |
Ü Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simul., 68 (2005), 127–143. https://doi.org/10.1016/j.matcom.2004.10.005 doi: 10.1016/j.matcom.2004.10.005
![]() |
[52] | S. C. Shiralashetti, R. A. Mundewadi, S. S. Naregal, B. Veeresh, Haar wavelet collocation method for the numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations, Global J. Pure Appl. Math., 13 (2017), 463–474. |
[53] |
Y. Li, W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216 (2010), 2276–2285. https://doi.org/10.1016/j.amc.2010.03.063 doi: 10.1016/j.amc.2010.03.063
![]() |
[54] |
J. Majak, B. Shvartsman, K. Karjust, M. Mikola, A. Haavajõe, M. Pohlak, On the accuracy of the Haar wavelet discretization method, Compos. Part B Eng., 80 (2015), 321–327. https://doi.org/10.1016/j.compositesb.2015.06.008 doi: 10.1016/j.compositesb.2015.06.008
![]() |
[55] |
R. Zarin, H. Khaliq, A. Khan, I. Ahmed, U. W. Humphries, A numerical study based on Haar wavelet collocation methods of fractional-order antidotal computer virus model, Symmetry, 15 (2023), 621. https://doi.org/10.3390/sym15030621 doi: 10.3390/sym15030621
![]() |
1. | Douglas M. Franz, Jonathan L. Belof, Keith McLaughlin, Christian R. Cioce, Brant Tudor, Adam Hogan, Luciano Laratelli, Meagan Mulcair, Matthew Mostrom, Alejandro Navas, Abraham C. Stern, Katherine A. Forrest, Tony Pham, Brian Space, MPMC and MCMD: Free High‐Performance Simulation Software for Atomistic Systems, 2019, 2, 2513-0390, 1900113, 10.1002/adts.201900113 | |
2. | Yu-Yun Lin, Fu-Yu Liu, I-Chia Chen, Hwei-Yan Tsai, Jhen-Wei Huang, Jia-Hao Lin, Chiing-Chang Chen, Photocatalytic reduction of carbon dioxide by BiTeX (X = Cl, Br, I) under visible-light irradiation, 2024, 365, 03014797, 121536, 10.1016/j.jenvman.2024.121536 | |
3. | Yu-Yun Lin, Hong-Han Huang, Shiuh-Tsuen Huang, Fu-Yu Liu, Jia-Hao Lin, Chiing-Chang Chen, Synthesis, characterization, photocatalytic activity of selenium vacancy in BiSeX and BiSeX/GO (X = Cl、Br、I) photocatalysts, 2025, 10106030, 116330, 10.1016/j.jphotochem.2025.116330 |
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |