In online social networks, users can quickly get hot topic information from trending search lists where publishers and participants may not have neighbor relationships. This paper aims to predict the diffusion trend of a hot topic in networks. For this purpose, this paper first proposes user diffusion willingness, doubt degree, topic contribution, topic popularity and the number of new users. Then, it proposes a hot topic diffusion approach based on the independent cascade (IC) model and trending search lists, named the ICTSL model. The experimental results on three hot topics show that the predictive results of the proposed ICTSL model are consistent with the actual topic data to a great extent. Compared with the IC, independent cascade with propagation background (ICPB), competitive complementary independent cascade diffusion (CCIC) and second-order IC models, the Mean Square Error of the proposed ICTSL model is decreased by approximately 0.78%–3.71% on three real topics.
Citation: Yuqi Chen, Xianyong Li, Weikai Zhou, Yajun Du, Yongquan Fan, Dong Huang, Xiaoliang Chen. A hot topic diffusion approach based on the independent cascade model and trending search lists in online social networks[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11260-11280. doi: 10.3934/mbe.2023499
In online social networks, users can quickly get hot topic information from trending search lists where publishers and participants may not have neighbor relationships. This paper aims to predict the diffusion trend of a hot topic in networks. For this purpose, this paper first proposes user diffusion willingness, doubt degree, topic contribution, topic popularity and the number of new users. Then, it proposes a hot topic diffusion approach based on the independent cascade (IC) model and trending search lists, named the ICTSL model. The experimental results on three hot topics show that the predictive results of the proposed ICTSL model are consistent with the actual topic data to a great extent. Compared with the IC, independent cascade with propagation background (ICPB), competitive complementary independent cascade diffusion (CCIC) and second-order IC models, the Mean Square Error of the proposed ICTSL model is decreased by approximately 0.78%–3.71% on three real topics.
[1] | Y. Lu, J. Liu, The impact of information dissemination strategies to epidemic spreading on complex networks, Phys. A, 536 (2019), 120920. https://doi.org/10.1016/j.physa.2019.04.156 doi: 10.1016/j.physa.2019.04.156 |
[2] | Y. Z. Ning, X. Liu, H. M. Cheng, Z. Y. Zhang, Effects of social network structures and behavioral responses on the spread of infectious diseases, Phys. A, 539 (2019), 378–4371. https://doi.org/10.1016/j.physa.2019.122907 doi: 10.1016/j.physa.2019.122907 |
[3] | T. Wang, J. He, X. Wang, An information spreading model based on online social networks, Phys. A, 490 (2018), 488–496. https://doi.org/10.1016/j.physa.2017.08.078 doi: 10.1016/j.physa.2017.08.078 |
[4] | Y. Wang, J. Wang, H. Wang, L. Zhang, M. Li, Users' mobility enhances information diffusion in online social networks, Inf. Sc., 546 (2020), 329–348. https://doi.org/10.1016/j.ins.2020.07.061 doi: 10.1016/j.ins.2020.07.061 |
[5] | Y. Xiao, W. Li, S. Qiang, A rumor & anti-rumor propagation model based on data enhancement and evolutionary game, IEEE Trans. Emerging Top. Comput., 10 (2020), 690–703. https://doi.org/10.1109/TETC.2020.3034188 doi: 10.1109/TETC.2020.3034188 |
[6] | Y. Xiao, Z. Huang, Q. Li, X. Lu, T. Li, Diffusion pixelation: A game diffusion model of rumor & anti-rumor inspired by image restoration, IEEE Trans. Knowl. Data Eng., 1 (2022). https://doi.org/10.1109/TKDE.2022.3144310 |
[7] | Q. Li, T. Xiang, T. Dai, Y. Xiao, An information dissemination model based on the rumor & anti-rumor & stimulate-rumor and tripartite cognitive game, IEEE Trans. Cognit. Develop. Syst., 1 (2022), 1–13. https://doi.org/10.1109/TCDS.2022.3193576 doi: 10.1109/TCDS.2022.3193576 |
[8] | D. Jin, X. Ma, Y. Zhang, H. Abbas, H. Yu, Information diffusion model based on social big data, Mobile Networks Appl., 23 (2018), 717–722. https://doi.org/10.1007/s11036-018-1004-4 doi: 10.1007/s11036-018-1004-4 |
[9] | S. Kumar, M. Sanini, M. Goel, N. Aggarwal, Modeling information diffusion in online social networks using SEI epidemic model, Proc. Comput. Sci., 171 (2020), 672–678. https://doi.org/10.1016/j.procs.2020.04.073 doi: 10.1016/j.procs.2020.04.073 |
[10] | Q. Zhang, X. Li, Y. Fan, Y. Du, An SEI3R information propagation control algorithm with structural hole and high influential infected nodes in social networks, Eng. Appl. Artif. Intell., 108 (2022), 104573. https://doi.org/10.1016/j.engappai.2021.104573 doi: 10.1016/j.engappai.2021.104573 |
[11] | D. Kempe, Maximizing the spread of influence through a social network, Theory Comput., 11 (2015), 105–147. https://doi.org/10.1145/956750.956769 doi: 10.1145/956750.956769 |
[12] | R. Olivares, F. Muoz, F. Riquelme, A multi-objective linear threshold influence spread model solved by swarm intelligence-based methods, Knowl. Based Syst., 212 (2021), 106623. https://doi.org/10.1016/j.knosys.2020.106623 doi: 10.1016/j.knosys.2020.106623 |
[13] | J. Tang, R. Zhang, P. Wang, Z. Zhao, L. Fan, X. Liu, A discrete shuffled frog-leaping algorithm to identify influential nodes for influence maximization in social networks, Knowl. Based Syst., 187 (2020), 104833. https://doi.org/10.1016/j.knosys.2019.07.004 doi: 10.1016/j.knosys.2019.07.004 |
[14] | K. Saito, M. Kimura, K. Ohara, H. Motoda, Learning continuous-time information diffusion model for social behavioral data analysis, Adv. Mach. Learn., (2009), 322–337. https://doi.org/10.1007/978-3-642-05224-8_25 |
[15] | M. K. Alasadi, H. N. Almamory, Diffusion model based on shared friends-aware independent cascade, J. Phys., 1294 (2019), 1884–2023. https://doi.org/10.1088/1742-6596/1294/4/042006 doi: 10.1088/1742-6596/1294/4/042006 |
[16] | W. Tang, G. Luo, Y. Wu, L. Tian, Z. Cai, A second-order diffusion model for influence maximization in social networks, IEEE Trans. Comput. Social Syst., 6 (2019), 702–714. https://doi.org/10.1109/TCSS.2019.2921422 doi: 10.1109/TCSS.2019.2921422 |
[17] | K. Li, T. Xu, S. Feng, L. Qiao, H. Shen, X. Cheng, et al., The propagation background in social networks: Simulating and modeling, Int. J. Autom. Comput., 17 (2020), 353–363. https://doi.org/10.1007/s11633-020-1227-2 doi: 10.1007/s11633-020-1227-2 |
[18] | A. Saxena, H. Saxena, R. Gera, Competitive influence propagation and fake news mitigation in the presence of strong user bias, preprint, arXiv: 2011.04857v1. |
[19] | H. Huang, Z. Meng, H. Shen, Competitive and complementary influence maximization in social network: a follower's perspective, Knowl. Based Syst., 213 (2020), 106600. https://doi.org/10.1016/j.knosys.2020.106600 doi: 10.1016/j.knosys.2020.106600 |
[20] | L. Zhang, J. Wei, R. J. Boncella, Emotional communication analysis of emergency microblog based on the evolution life cycle of public opinion, Inf. Discovery Delivery, 48 (2020), 151–163. https://doi.org/10.1108/IDD-10-2019-0074 doi: 10.1108/IDD-10-2019-0074 |
[21] | J. Wei, L. Zhang, Analysis of information dissemination based on emotional and the evolution life cycle of public opinion, in 2019 International Conference on Robots & Intelligent System (ICRIS), 2019,265–268. https://doi.org/10.1109/ICRIS.2019.00076 |
[22] | Y. He, J. Li, M. Zhu, D. Xu, Life cycle identification and analysis of microblog hot topics, in 2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2 (2018), 156–159. https://doi.org/10.1109/IHMSC.2018.10142 |
[23] | C. Wukich, A. Steinberg, Nonprofit and public sector participation in self-organizing information networks: Twitter hashtag and trending topic use during disasters, Risk Hazards Crisis Pub. Policy, 4 (2013), 83–109. https://doi.org/10.1002/rhc3.12036 doi: 10.1002/rhc3.12036 |
[24] | P. Li, H. Nie, F. Yin, J. Liu, D. Zhou, Modeling and estimating user influence in social networks, IEEE Access, 8 (2020), 21943–21952. https://doi.org/10.1109/ACCESS.2020.2969361 doi: 10.1109/ACCESS.2020.2969361 |
[25] | Z. Chen, J. Wei, S. Liang, T. Cai, X. Liao, Information cascades prediction with graph attention, in IEEE Transactions on Emerging Topics in Computing, 9 (2021). https://doi.org/10.3389/fphy.2021.739202 |
[26] | H. Zhang, Y. Yao, W. Tang, J. Zhu, A Hegselmann-Krause model with social influence-aware bounded confidence threshold in social networks, in IEEE Transactions on Network Science and Engineering, 5 (2022), 22–24. https://doi.org/10.1109/DSIT55514.2022.9943930 |
[27] | S. Silva, Newton's cooling law in generalised statistical mechanics, Phys. A, 565 (2021), 125539. https://doi.org/10.1016/j.physa.2020.125539 doi: 10.1016/j.physa.2020.125539 |
[28] | J. Goldenberg, L. E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth, Mark. Lett., 12 (2001), 211–223. https://doi.org/10.1023/A:1011122126881 doi: 10.1023/A:1011122126881 |
[29] | J. Goldenberg, B. Libai, Using Complex systems analysis to advance marketing theory development: modeling heterogeneity effects on new product growth through stochastic cellular automata, Acad. Mark. Sci. Rev., 9 (2001), 1–19. https://www.amsreview.org/articles/goldenberg09-2001.pdf |