Pinning control of spatiotemporal chaos in the LCLV device
-
1.
Institute of Physics, Pontifical Catholic University of Valparaíso, 234-0025 Valparaíso
-
2.
Departamento de Física y Mat. Aplicada, Universidad de Navarra, 31080 Pamplona
-
3.
CNR: Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI)
-
Received:
01 November 2006
Accepted:
29 June 2018
Published:
01 May 2007
-
-
MSC :
37D45.
-
-
We study the feasibility of transferring data in an optical
device by using a limited number of parallel channels.
By applying a spatially localized correcting term to the
evolution of a liquid crystal light valve in its spatio--temporal
chaotic regime, we are able to restore the dynamics to a specified
target pattern. The system is controlled
in a finite time. The number and position of pinning points
needed to attain control is also investigated.
Citation: Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 523-530. doi: 10.3934/mbe.2007.4.523
Related Papers:
[1] |
Juvencio Alberto Betancourt-Mar, José Manuel Nieto-Villar .
Theoretical models for chronotherapy: Periodic perturbations in funnel chaos type. Mathematical Biosciences and Engineering, 2007, 4(2): 177-186.
doi: 10.3934/mbe.2007.4.177
|
[2] |
Zongcheng Li, Jin Li .
Chaos criteria and chaotification schemes on a class of first-order partial difference equations. Mathematical Biosciences and Engineering, 2023, 20(2): 3425-3454.
doi: 10.3934/mbe.2023161
|
[3] |
Xuepeng Zheng, Bin Nie, Jiandong Chen, Yuwen Du, Yuchao Zhang, Haike Jin .
An improved particle swarm optimization combined with double-chaos search. Mathematical Biosciences and Engineering, 2023, 20(9): 15737-15764.
doi: 10.3934/mbe.2023701
|
[4] |
Ceyu Lei, Xiaoling Han, Weiming Wang .
Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor. Mathematical Biosciences and Engineering, 2022, 19(7): 6659-6679.
doi: 10.3934/mbe.2022313
|
[5] |
Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov .
Statistical properties of dynamical chaos. Mathematical Biosciences and Engineering, 2004, 1(1): 161-184.
doi: 10.3934/mbe.2004.1.161
|
[6] |
Abdon ATANGANA, Seda İĞRET ARAZ .
Deterministic-Stochastic modeling: A new direction in modeling real world problems with crossover effect. Mathematical Biosciences and Engineering, 2022, 19(4): 3526-3563.
doi: 10.3934/mbe.2022163
|
[7] |
Xiaoling Han, Xiongxiong Du .
Dynamics study of nonlinear discrete predator-prey system with Michaelis-Menten type harvesting. Mathematical Biosciences and Engineering, 2023, 20(9): 16939-16961.
doi: 10.3934/mbe.2023755
|
[8] |
Zigen Song, Jian Xu, Bin Zhen .
Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Mathematical Biosciences and Engineering, 2019, 16(6): 6406-6425.
doi: 10.3934/mbe.2019320
|
[9] |
A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq .
Discrete-time predator-prey model with flip bifurcation and chaos control. Mathematical Biosciences and Engineering, 2020, 17(5): 5944-5960.
doi: 10.3934/mbe.2020317
|
[10] |
Juvencio Alberto Betancourt-Mar, Víctor Alfonso Méndez-Guerrero, Carlos Hernández-Rodríguez, José Manuel Nieto-Villar .
Theoretical models for chronotherapy: Periodic perturbations in hyperchaos. Mathematical Biosciences and Engineering, 2010, 7(3): 553-560.
doi: 10.3934/mbe.2010.7.553
|
-
Abstract
We study the feasibility of transferring data in an optical
device by using a limited number of parallel channels.
By applying a spatially localized correcting term to the
evolution of a liquid crystal light valve in its spatio--temporal
chaotic regime, we are able to restore the dynamics to a specified
target pattern. The system is controlled
in a finite time. The number and position of pinning points
needed to attain control is also investigated.
-
-
This article has been cited by:
1.
|
Yueheng Li, Biao Luo, Derong Liu, Yin Yang, Zhanyu Yang,
Robust Exponential Synchronization for Memristor Neural Networks With Nonidentical Characteristics by Pinning Control,
2019,
2168-2216,
1,
10.1109/TSMC.2019.2911510
|
|
2.
|
Meng Zhan, Wei Zou, Xu Liu,
Taming turbulence in the complex Ginzburg-Landau equation,
2010,
81,
1539-3755,
10.1103/PhysRevE.81.036211
|
|
-
-