Critical-Point Analysis For Three-Variable Cancer Angiogenesis Models

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 34D05, 34K20, 34K60.

  • We perform critical-point analysis for three-variable systems that represent essential processes of the growth of the angiogenic tumor, namely, tumor growth, vascularization, and generation of angiogenic factor (protein) as a function of effective vessel density. Two models that describe tumor growth depending on vascular mass and regulation of new vessel formation through a key angiogenic factor are explored. The first model is formulated in terms of ODEs, while the second assumes delays in this regulation, thus leading to a system of DDEs. In both models, the only nontrivial critical point is always unstable, while one of the trivial critical points is always stable. The models predict unlimited growth, if the initial condition is close enough to the nontrivial critical point, and this growth may be characterized by oscillations in tumor and vascular mass. We suggest that angiogenesis per se does not suffice for explaining the observed stabilization of vascular tumor size.

    Citation: Urszula Foryś, Yuri Kheifetz, Yuri Kogan. Critical-Point Analysis For Three-Variable Cancer Angiogenesis Models[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 511-525. doi: 10.3934/mbe.2005.2.511

    Related Papers:

    [1] Austin Baird, Laura Oelsner, Charles Fisher, Matt Witte, My Huynh . A multiscale computational model of angiogenesis after traumatic brain injury, investigating the role location plays in volumetric recovery. Mathematical Biosciences and Engineering, 2021, 18(4): 3227-3257. doi: 10.3934/mbe.2021161
    [2] John D. Nagy, Dieter Armbruster . Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Mathematical Biosciences and Engineering, 2012, 9(4): 843-876. doi: 10.3934/mbe.2012.9.843
    [3] Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba . A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences and Engineering, 2013, 10(1): 167-184. doi: 10.3934/mbe.2013.10.167
    [4] Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska . Model of tumour angiogenesis -- analysis of stability with respect to delays. Mathematical Biosciences and Engineering, 2013, 10(1): 19-35. doi: 10.3934/mbe.2013.10.19
    [5] Emad Attia, Marek Bodnar, Urszula Foryś . Angiogenesis model with Erlang distributed delays. Mathematical Biosciences and Engineering, 2017, 14(1): 1-15. doi: 10.3934/mbe.2017001
    [6] Mahya Mohammadi, M. Soltani, Cyrus Aghanajafi, Mohammad Kohandel . Investigation of the evolution of tumor-induced microvascular network under the inhibitory effect of anti-angiogenic factor, angiostatin: A mathematical study. Mathematical Biosciences and Engineering, 2023, 20(3): 5448-5480. doi: 10.3934/mbe.2023252
    [7] Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni . On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences and Engineering, 2017, 14(1): 45-66. doi: 10.3934/mbe.2017004
    [8] Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell . Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Mathematical Biosciences and Engineering, 2011, 8(2): 355-369. doi: 10.3934/mbe.2011.8.355
    [9] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [10] Xin Wei, Jianjun Paul Tian, Jiantao Zhao . Fairy circles and temporal periodic patterns in the delayed plant-sulfide feedback model. Mathematical Biosciences and Engineering, 2024, 21(8): 6783-6806. doi: 10.3934/mbe.2024297
  • We perform critical-point analysis for three-variable systems that represent essential processes of the growth of the angiogenic tumor, namely, tumor growth, vascularization, and generation of angiogenic factor (protein) as a function of effective vessel density. Two models that describe tumor growth depending on vascular mass and regulation of new vessel formation through a key angiogenic factor are explored. The first model is formulated in terms of ODEs, while the second assumes delays in this regulation, thus leading to a system of DDEs. In both models, the only nontrivial critical point is always unstable, while one of the trivial critical points is always stable. The models predict unlimited growth, if the initial condition is close enough to the nontrivial critical point, and this growth may be characterized by oscillations in tumor and vascular mass. We suggest that angiogenesis per se does not suffice for explaining the observed stabilization of vascular tumor size.


  • This article has been cited by:

    1. Alberto d’Onofrio, Urszula Ledzewicz, Helmut Maurer, Heinz Schättler, On optimal delivery of combination therapy for tumors, 2009, 222, 00255564, 13, 10.1016/j.mbs.2009.08.004
    2. Zvia Agur, Naamah Bloch, Boris Gorelik, Marina Kleiman, Yuri Kogan, Yael Sagi, D. Sidransky, Yael Ronen, 2011, 9781118016435, 201, 10.1002/9781118016435.ch9
    3. Marzena Dołbniak, Andrzej Świerniak, Comparison of Simple Models of Periodic Protocols for Combined Anticancer Therapy, 2013, 2013, 1748-670X, 1, 10.1155/2013/567213
    4. Alberto d’Onofrio, Rapidly acting antitumoral antiangiogenic therapies, 2007, 76, 1539-3755, 10.1103/PhysRevE.76.031920
    5. Urszula Foryś, Monika J. Piotrowska, Analysis of the Hopf bifurcation for the family of angiogenesis models II: The case of two nonzero unequal delays, 2013, 220, 00963003, 277, 10.1016/j.amc.2013.05.077
    6. Zvia Agur, 2012, 9781119940012, 78, 10.1002/9781119940012.ch4
    7. MAREK BODNAR, URSZULA FORYŚ, ANGIOGENESIS MODEL WITH CARRYING CAPACITY DEPENDING ON VESSEL DENSITY, 2009, 17, 0218-3390, 1, 10.1142/S0218339009002739
    8. Moran Elishmereni, Yuri Kheifetz, Henrik Søndergaard, Rune Viig Overgaard, Zvia Agur, Thomas Lengauer, An Integrated Disease/Pharmacokinetic/Pharmacodynamic Model Suggests Improved Interleukin-21 Regimens Validated Prospectively for Mouse Solid Cancers, 2011, 7, 1553-7358, e1002206, 10.1371/journal.pcbi.1002206
    9. Alberto d’Onofrio, Paola Cerrai, A bi-parametric model for the tumour angiogenesis and antiangiogenesis therapy, 2009, 49, 08957177, 1156, 10.1016/j.mcm.2008.05.001
    10. A. d’Onofrio, A. Gandolfi, A. Rocca, The dynamics of tumour-vasculature interaction suggests low-dose, time-dense anti-angiogenic schedulings, 2009, 42, 09607722, 317, 10.1111/j.1365-2184.2009.00595.x
    11. Andrzej Swierniak, Marek Kimmel, Jaroslaw Smieja, Mathematical modeling as a tool for planning anticancer therapy, 2009, 625, 00142999, 108, 10.1016/j.ejphar.2009.08.041
    12. Alberto d’Onofrio, Alberto Gandolfi, Chemotherapy of vascularised tumours: Role of vessel density and the effect of vascular “pruning”, 2010, 264, 00225193, 253, 10.1016/j.jtbi.2010.01.023
    13. Alberto d’Onofrio, Alberto Gandolfi, Resistance to antitumor chemotherapy due to bounded-noise-induced transitions, 2010, 82, 1539-3755, 10.1103/PhysRevE.82.061901
    14. Urszula Ledzewicz, Heinz Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, 2008, 252, 00225193, 295, 10.1016/j.jtbi.2008.02.014
    15. Urszula Ledzewicz, Behrooz Amini, Heinz Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, 2015, 12, 1551-0018, 1257, 10.3934/mbe.2015.12.1257
    16. Bülent Karasözen, Hakan Öktem, Mustafa Kahraman, A model of angiogenesis by hybrid systems with delay on the piecewise constant part, 2009, 19, 09591524, 1257, 10.1016/j.jprocont.2009.05.003
    17. Marek Bodnar, Pilar Guerrero, Ruben Perez-Carrasco, Monika J. Piotrowska, Grant Lythe, Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma, 2016, 11, 1932-6203, e0155553, 10.1371/journal.pone.0155553
    18. Urszula Ledzewicz, Heinz Schaettler, On an extension of a mathematical model for tumor anti-angiogenesis, 2009, 71, 0362546X, e2390, 10.1016/j.na.2009.05.037
    19. Alberto d’Onofrio, Alberto Gandolfi, 2013, Chapter 11, 978-1-4614-7384-8, 171, 10.1007/978-1-4614-7385-5_11
    20. Monika J. Piotrowska, Urszula Foryś, The nature of Hopf bifurcation for the Gompertz model with delays, 2011, 54, 08957177, 2183, 10.1016/j.mcm.2011.05.027
    21. Mihaela Manisor, Paula Raica, L. Miclea, Teodora Pop, Ofelia Mosteanu, 2008, Mathematical modeling and control strategies for tumor-induced angiogenesis, 978-1-4244-2576-1, 166, 10.1109/AQTR.2008.4588903
    22. Christophe Letellier, Sourav Kumar Sasmal, Clément Draghi, Fabrice Denis, Dibakar Ghosh, A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis, 2017, 99, 09600779, 297, 10.1016/j.chaos.2017.04.013
    23. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 8, 978-3-319-06916-6, 209, 10.1007/978-3-319-06917-3_8
    24. U. Ledzewicz, H. Schättler, Analysis of optimal controls for a mathematical model of tumour anti‐angiogenesis, 2008, 29, 0143-2087, 41, 10.1002/oca.814
    25. Zvia Agur, From the Evolution of Toxin Resistance to Virtual Clinical Trials: The Role of Mathematical Models in Oncology, 2010, 6, 1479-6694, 917, 10.2217/fon.10.61
    26. Sudip Samanta, Sandip Sarkar, Kaushik Kayal, Cancer model and its possible control - a Z-type control approach, 2024, 22150161, 102895, 10.1016/j.mex.2024.102895
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2905) PDF downloads(518) Cited by(26)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog