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ABSTRACT. We perform critical-point analysis for three-variable systems that
represent essential processes of the growth of the angiogenic tumor, namely,
tumor growth, vascularization, and generation of angiogenic factor (protein) as
a function of effective vessel density. Two models that describe tumor growth
depending on vascular mass and regulation of new vessel formation through
a key angiogenic factor are explored. The first model is formulated in terms
of ODEs, while the second assumes delays in this regulation, thus leading
to a system of DDEs. In both models, the only nontrivial critical point is
always unstable, while one of the trivial critical points is always stable. The
models predict unlimited growth, if the initial condition is close enough to the
nontrivial critical point, and this growth may be characterized by oscillations
in tumor and vascular mass. We suggest that angiogenesis per se does not
suffice for explaining the observed stabilization of vascular tumor size.

1. Introduction. The crucial role of blood supply in the tumor development is
presently well recognized (see, e.g., [11, 16, 27]). Most solid tumors start their
growth in avascular form, where the cells obtain oxygen, nutrients, and growth
factors by diffusion from the outer environment. Such a form has a size limitation,
shown both experimentally (e.g., [29, 34]) and theoretically (e.g., [2, 1, 19, 12, 35]).
To continue its growth, the tumor needs to initiate the process of angiogenesis—
formation of new blood vessels inside the tissue. This newly created vascular net-
work enables tumor expansion and growth by carrying all the needed nutrients into
the tumor tissue. Angiogenesis normally occurs in healthy tissues, for example, in
wound healing. It consists of several stages, from endothelial cells proliferation and
migration to establishment of the full vascular network of mature vessels covered
by the smooth muscle cells. This process is regulated by specific factors that are
secreted by the cells in the tissue. The regulation of angiogenesis is complex and
includes several feedback processes balancing each other at different stages. During
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tumor development, angiogenesis is initiated by factors secreted by tumor cells,
because of nutrient deprivation [15, 30]. Ineffective angiogenesis can lead to insuf-
ficient blood supply and thus limit tumor growth and invasion. In recent decades,
different models of tumor angiogenesis and tumor growth dependence on angiogen-
esis has been proposed. Those models concentrate on different key aspects of the
angiogenic process. Some models focus on the formation of new vasculature in the
presence of stimulating factors (e.g., [13]). Others define the whole process of tumor
growth as depending on the vascular mass (e.g., [9, 31, 24]). More detailed models
can describe some specific aspects of the interplay between tumor dependence on
the vasculature and the regulation of angiogenesis by normal and cancerous cells.

In [3], a family of models of tumor angiogenesis was presented. These models are
new in assuming that the effective vessel density (rather than vessel mass per se,
and vessel maturation) may be significant in modulating vascular tumor dynamics.
The work was aimed at explaining the experimentally observed oscillations in tumor
growth ([4, 22]) and relating these oscillations to the intrinsic properties of the
angiogenic process. It was shown that in all the proposed models, Hopf points exist
whenever a delay is assumed in the regulation of tumor proliferation and vessels
formation. The existence of Hopf points is associated with periodic behavior in
the system—oscillations of tumor size and vessel volume. Time delays and their
role in tumor growth and oscillations were also considered in connection with other
processes, for example, proliferation and apoptosis of cells (cf. [7, 8, 10, 18, 20]).

In the present work, we further investigate the general behavior of two models
considered in [3] with and without delay. These models assume that tumor dynam-
ics are controlled by angiogenesis and, in particular, by the effective vessel density.
This assumption will be examined by analyzing the models and comparing them
to real-life dynamics. To this end, we examine stability and asymptotic behavior
of solutions. This integrates with the previous work to yield effective character-
ization of those models. In the future, we will extend this investigation to more
complicated models.

2. Model description. We present short description of the models under discus-
sion. For a more detailed description see [3]. We consider a system including three
time-dependent variables: tumor size, N(¢); amount of regulating protein, P(t);
and vessel volume V' (t).

The process is described by a system of ODEs (with or without delays), and the
interdependence between variables is described using ”sigmoid-shaped” functions,
assumed to be smooth. Such functions are used to represent, in a generic way, the
response of biological systems to different stimuli. Their form reflects experimental
observations that the system reactions change only within a certain range of stimuli
values. Inside this range, the dependence is monotonic, but possibly with a non-
constant derivative. We do not propose any specific formulae for those functions;
rather, we describe their crucial properties. We also use the variable for effective
vessel density, which is calculated from tumor size and vessel volume: E = V/N
(see [3, 5]).

The equations for the first model are

N:fl(E)N7

P = fo(E)N =P, (1)
V = f3(P)V.
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In (1), tumor growth rate is described by f1, which depends on vessel density, E. It
is an increasing sigmoid function with f1(0) = —a; < 0 (when the vessel density is
insufficient, tumor cells die) and lim,_,+ f1(z) = by > 0 (maximal possible growth
rate is limited by maximal proliferation rate of the cells). The rate of protein
secretion by tumor cells in (1), which depends on vessel density is described by
f2. This function satisfies f2(0) = a2 > 0, lim, o fo(x) = 0, and decreases to
zero convexly (the secretion is the response to nutrient deprivation that results
from reduced vessel density). The growth rate of vasculature regulated by the
protein amount is described by f3. This function has properties similar to fi:
f3(0) = —ag < 0 (so vessels regress if not stimulated) and lim,_, o f3(x) = b3 > 0,
and the function is increasing.
Another form of the same system is obtained by a substitution V — E:

N = fl(E)N7
P = f3(E)N — 4P, 2)

E= (f3(P) - f1(E)>E-

The second model uses similar equations but assumes the existence of time delays
in the growth rates’ dependence on FE and P:

N = fi(E(t —m))N,
P = f3(E)N = 6P, (3)

E = (f3(P(t = 7)) ~ Hi(B(t— 7)) E.

3. Three-variable model without delay. In this section, we study system (2).
We focus on the analysis of (2), instead of (1) in original variables, for two main
reasons. The first one is of biological nature. We focus on the importance of
effective vessel density in the process of angiogenesis. Therefore, the properties of
(2) are of our main interest. On the other hand, the system after substitution has
better mathematical structure—it is naturally defined for every nonnegative values
of variables N, P, E, while (1) is not defined for N = 0 because of the definition
of E. Hence, we study the behavior of solutions to (2) and then interpret it in the
original variables N, P, V.

REMARK 1. Assume that f;(x), i =1, 2, 3 are of class C for nonnegative x. Then
for every nonnegative initial values Ny, Py, Ey > 0 and every t > 0, there exists a
unique nonnegative solution to (2).

Proof. Local existence and uniqueness of solutions to (2) is obvious. We show
that such a solution is nonnegative. For the first and the third equations of (2),
nonnegativity is an easy consequence of the form of these equations. Hence, for the
second equation, we have P > —§P, which implies P(t) > Pye %t > 0.

Global existence of solutions is also an easy consequence of the form of the
right-hand side. Specifically, it is linearly bounded, which guarantees existence of
solutions for every ¢t > 0. [ |

3.1. Critical points. In this section, we study the existence and local stability of
the critical points in system (2).

Obviously, there exists at least one critical point (0, 0, 0). Let (N, P, E) be a
nontrivial critical point. In this case, fi(E) = 0. The definition of f; implies that
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there is only one point £ > 0. From the third equation, we obtain either £ = 0 or
f3(P) = f1(E) = 0. Hence, f3(P) = 0. Because of the definition of fs, the point
P > 0 is also unique. The second equation of system (2) implies N = f?‘;(l%.
The analysis above shows that for every parameter value there exist two critical
points—the trivial one and the nontrivial
o 6PN ]
(N,P,FE) = (,P, E) with f1(E) = f3(P) =0.
f2(E)

Looking for other (semi-trivial) critical points, we obtain the following result.
If N =0, then P = 0 and the third equation implies f3(0) — f1(E) = 0. Hence,
f1(E) = —as. This means that such a critical point exists only when f;(0) < —ag
(for f1(0) = —as, the trivial and semi-trivial points coincide). Hence, for a; > as,

we have the third critical point, (0,0, E) with fi(E) = —as. In this case E < E.

COROLLARY 3.1. The number of critical points for (2) depends on the magnitude
of a1 in the following way:
For a1 > as, we have three critical points (0,0,0), (0,0,E), and (N, P, E).
For a; < a3, we have only two critical points (0,0,0), and (N, P, E

Now we study the stability of the critical points.

LEMMA 3.1. The nontrivial critical point (N, P, E) is always unstable. Stability of
the trivial critical point depends on the existence of a semi-trivial point, i.e., the
magnitude of a1. If a1 < ag, then the trivial point is stable; if a1 > as, then it is
unstable and the semi-trivial point that appears is stable.

Proof. The Jacobi matrix for (2) has the following form:
H(E) 0 fi(E)N
0 f(P)E f3(P) - [1i(E) - fiI(E)E

Hence, we have the following:

—ai 0 0
e MJ(0,0,0) = as —90 0 , and therefore, the trivial critical
0 0 a; — as

point is a saddle for a; > a3, or it is a stable node for a; < ag. There is
a saddle-node bifurcation when (0,0, E') appears.

—as 0 0
. MJ(0,0,E) = f2(E) -0 ) 0 ], which shows that (0,0,E)
0 f3(OF —fi(E)E
is a stable node when it exists.

o 0_ 0 f(E)N
e MJ(N,P,E) = | faE) —0  f3(E)N | .In this case, the charac-

0 fi(P)E —fi(E)E
teristic polynomial is equal to W(A) = —P()\), where

P(A) =N’ + (6 + A)X* + (A + BD)A — ABC

and A = f{(E)E, B = f{(P)N, C = fo(E), D = —f4(E)E. It is obvious
that there exists at least one positive characteristic value Ay > 0. Hence, the
nontrivial critical point is unstable independent of the parameters.
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Now, we study the behavior of solutions near (]\_/',P,E_’) in more details. In-
equality P’(\) > 0 for A > 0 guarantees the uniqueness of the positive zero of the
polynomial P()). Hence, if other zeros of P()) are real, then they are negative. We
show that if they are complex, then their real part is negative. Assume A\; = a+i3
and Ay = A\ are complex conjugate characteristic values. Then

PA)=A=2)A =)A= A2) =
=2 — (20 — M)A + (02 + B2 + 2a00) X — (a® + P \o.
Therefore, —2ac — A\g = d + A > 0 and then a < 0.

Finally, the nontrivial critical point is either a saddle or unstable spiral. The
direction of instability is described by the characteristic vector for Ag; in the plane
perpendicular to this characteristic vector, we have a stable focus. This character-
istic vector is calculated to be equal to

F(E)f5(P)EN
Ao(f1(E)E + o)
Ao f3(P)E
3.2. The model in original variables. Coming back to the original variables N,

P,V and the system described by (1) with E = -, we see that (1) is not properly
defined for N = 0. On the other hand, the whole right-hand side can be defined

also for N = 0, taking fi(E)N‘N =0fori=1,2.
0

Hence, we reformulate the model in the following way:

N = gl(va)v
P = g(N,V)-4P, (4)
V. = f3(P)V,

where v
gi(N,V) = { gZ(N)N igi xi 8: fori=1, 2.

It is easy to see that both functions g; are continuous for nonnegative N, V. There-
fore, the right-hand side of (4) is properly defined and continuous for every nonneg-
ative value of N, P, V. Moreover, the right-hand side of (4) is locally a Lipschitz
function. It is obvious for N # 0 because in this case the right-hand side is of class
C!. Hence, it is enough to check this property at the neighborhood of points (0, V),
for arbitrary V > 0. It is also enough to check this property for gi(N, V), i1 =1,2,
separately.

We have

‘gi(Nv V) - gi(O, V)l =

1 (3% ) ] < pllf@)l 2 € o) V] <

< A[(N,V) - (0"7)”’ A; =sup{|fi(z)| : x € [0,+00)}, i =1,2.
This implies that there exists a unique solution to (4) for every nonnegative ini-
tial condition. This also implies that (0,0,0) is the critical point for our system.
Moreover, this is the only trivial critical point. In fact, g1 (N, V) =0 N =0
or fi (%) =0for N # 0. Hence N = 0 or X = E (with fi(E) = 0). If N = 0,
then go(N, V) = 0, and this yields P = 0. From the third equation of (4) we obtain
V=0.
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For N # 0, we have V = EN, and therefore, g1 (N, EN) = 6P and f3(P)EN = 0.

Hence, f3(P) = 0, and this implies P = P, N = N = %, and V=V = EN.

We interpret the trivial critical points of (2) in the original variables. Both of
them form the same trivial solution (0,0,0) to (4). The difference lies in the way

the vessel volume depends on the tumor size when tumor size tends to 0. The

trivial point (0,0,0) means that the ratio % — 0 as V;N — 0, while the semi-

trivial one implies % — E as V, N — 0. Hence, vessel volume depends either more
than linearly (V ~ N7 ~ > 0, for the trivial case) or linearly (V ~ EN, for the
nontrivial one) on the tumor size.

We can conclude the analysis above with the following statement:

COROLLARY 3.2. The trivial solution (0,0,0) to (4) is stable independent of the
parameters. The nontrivial solution (N, P,V) is unstable independent of the pa-
rameters.

For the trivial solution (0,0,0), we obtain the following estimation. Assuming
P — 0 and E — 0 from the first and third equations of (1), we get
NV _A(E)
NV f3(P)
for every positive N, V. For P and F near 0, the following inequalities hold:
a; — € fl (E) < aq
as f5(P) “az—e€

Hence,

a]p — € V N al V
a3 VN az3—¢€V
because of the negativity of V. Integrating the inequalities above with respect to ¢
and changing variables in every integral, we obtain

— N
“me In V(t> > In (t> > “ In
as W Ny az — € Vo

and finally

a—e _a1
Vi >N >V
for every € > 0 and some constants ¢, cy > 0. This shows that £ — 0 with the rate
_a1
V7% in the case as > ajp.

4. Examples of the asymptotic behavior of (2). In this section, we present
some examples of the behavior of solutions to (2) for some particular functions f;,
1 =1, 2, 3, and discuss the dependence on these particular forms. For simulations,
we use the Michaelis-Menten-type functions as well as the exponential type pro-
posed in [3]. In both cases, we obtained similar results. In Figures 1-5 the graphs
correspond to the functions
d, E? a dsP?

fi(E) = E217_|_1 —ay, f2(E) = Eijl’ f3(P) = P23+ 1~
with d; = b;+a;, i = 1,3. These are the simplest functions of the Michaelis-Menten
type that fulfill the assumptions. For all figures, we have 6 = as = 1 and different
values of d; and a;, i =1, 3.

as
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FIGURE 1. For this graph, we used d; = 2, a; = 1, d3 = 1, and
a3z = 0.5. The semi-trivial critical point exists because a; > ag, and
it has the coordinates (0, 0, %) The nontrivial one is (2,1, 1). The
initial-condition coordinates in this graph are (2,1,0.9), (1,1,1),
(1,1,0.1), (1,0.1,0.1) and (1,0.1,1). All these points belong to the
basin of attraction of the semi-trivial critical point.

FIGURE 2. For this graph, we used d; = 1, a; = 0.5, d3 = 2,
and az = 1. The semi-trivial critical point does not exist, because
a3 > ai. The nontrivial one has the same coordinates as in Fig.
1. The initial-condition coordinates are also the same. All these
points belong to the basin of attraction of the trivial critical point.

The asymptotic behavior of the system observed in simulations depends on the
initial conditions and model parameters in the following way: if the initial con-
dition belongs to the basin of attraction of the trivial or semi-trivial (if it exists)
critical point, then the solutionobviously tends to this point (see Figures 1 and 2).
Otherwise, N(t) — +o0o. In such a case, we observe three types of the behavior:

e N, P — oo, F stabilizes at some level (Fig. 3),
e N, E — oo, P stabilizes at some level (Fig. 4),
e all variables N, P, E — oo (Fig. 5).
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The question arises about the connection between the asymptotic behavior and the
coefficients of the model in general and the type of functions f; in the particular
case used in our simulations.

54 /
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FIGURE 3. The parameters of the model are the same as in Fig-
ure 1. We have by > bs. The initial-condition coordinates are
(20,20,11), (10,5,30), (0.1,10,20). The upper-left graph corre-
sponds to ¢t = 5—we see three different orbits. The upper-right
graph corresponds to t = 15—now the orbits join and appears as
one orbit. The lower-left graph shows the stabilization of F, and
the lower-right graph describes the linear asymptotic dependence
between N and P.

LEMMA 4.1. If by > bs, then E(t) is bounded.

Proof. Let E be such that f1(E) = bs. We show that if By < E, then E(t) < E for
every t > 0. If not, then there exists £ such that E(V) = E and E(f) > 0. On the

other hand, the model implies E(f) < (bg — fi(E )) = 0, which contradicts the

definition of £.

Now, we show that if Eg > E’, then E(t) < Ey. Because Ey < (bs — f1(Ey)) Ep <
0, the function E(t) decreases at the beginning. But the same inequality is true
for every point ¢ such that E(t) > E. Hence, E(t) decreases until the inequality
E(t) > E holds. Therefore, either E(t) > E for every t > 0 and then E(t) is
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FIGURE 4. The parameters of the model are d; = 1, a; = 0.5, d3 =
4, and a3 = 1. We have b3 > 2b;. The initial-condition coordinate
are the same as in Figure 3. The times for the corresponding graphs
are also the same. As noted previously, we see three different orbits
in the upper-left graph, while in the upper-right graph the orbits
join and appeares as one orbit. The lower-left graph shows the
stabilization of P and the lower-right graph describes the linear
asymptotic dependence between E and N.

decreasing, the inequality E(t) < Ey holds, and FE(t) has a limit, obviously; or
there exists ¢ such that E(f) = F, which means the previous estimation holds. M

REMARK 2. If P — oo, then E — E.
Proof. If P — 00, then f5(P) — bs. Hence, for every small € > 0 there exists ¢ such
that for ¢t > t we have
(bs —e— fi(E)E < E < (bs— f1(E)) E.
Let E. be such that fl(E‘E) = b3 — €. Hence, if £ < E’E, then F is increasing and

for sufficiently large t we have E > E — €. On the other hand, if £ > E, then E is
decreasing, so for sufficiently large ¢t we have £ < E + e¢. Therefore, £ — FE. |
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FIGURE 5. The parameters of the model are d; = 1, a; = 0.5,
d3 = 1.6, and a3 = 1. We have b; < bs < 2b;. The initial-
condition coordinates are the same as in Figure 3. The times for
the corresponding graphs are ¢ = 5 for the upper graph and ¢ = 50
for the lower ones. As noted previously, we see three different orbits
in the upper graph. In the lower-left graph, the second and third
orbits join, while in the lower-right graph, the first and second
orbits do not join. However, for all orbits, we observe an increase
in all variables.

REMARK 3. If E — E, then N, P — 400 and % — ¢, where ¢ is some constant.

Proof. For E — E, the asymptotic behavior of N is described by N ~ bsN.
Hence, N(t) ~ Cye’! for t — oo. Now, we can estimate the growth of P as
P = fy(E)Cyne’! — §P. Therefore, P ~ Cpe®! asymptotically. Hence, & ~ %}3 as

t — 0.

Finally, we see that the behavior described in Lemma 4.1 and Remarks 2 and 3
does not depend on the particular choice of the functions f;. In two other cases,
this does not hold true. Precisely, if E — oo, then f3(F) — 0. Assuming that
N — o0, we get fo(E)N undetermine. The asymptotic growth of N is obviously
exponential. For E — oo, we have f;(E) — b; and N ~ Cye®! for t — oo.
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REMARK 4. Ifbs > by and E, P — oo, then E — oo exponentially with the exponent
equal to bs — by.

Proof. Tt is obvious because of the asymptotic growth of E described by E ~
(b3 — bl)E [ ]

Consider the function fo(E) = 5%#7. Assuming that E ~ Cpelts=0)t we obtain
fo(E) =~ et 2y and

G,QCNeblt

P= Crocbobi 41 OP. (5)
Hence, to obtain P — oo, it is necessary that by > bs — by, i.e., 2by > b3. If the
inverse inequality holds (i.e., 2b; < bs,) then formula (5) implies P — 0, contrary to
the assumption. Stabilization of P at some level P is possible when P is such that
9] byt

bs > b= f3(P) > by and then F =~ Cret=tt Moreover, f2(E)N =~ %,
and to obtain stabilization, one needs bs > b = 2b;.

Another example. In the case analyzed above, if fo(E) = ase™ ¥, then fo(E)N =~
agCNeblte_CEe(b7b1>t, so this expression is a double exponential. Hence, stabiliza-
tion is possible for every b3 > b > b;. This shows that the results depend on the

particular choice of fs.

a2

Summarizing, in the case of fo(E) = 7%,

of asymptotic behavior of large tumors:

we observe the following three type

e If by > b3, then we expect the unlimited growth of IV, P and the stabilization
of F.

o If by < bs < 2b1, then we expect the unlimited growth of every variable IV,
P, E.

e If b3 > 2by, then we expect the unlimited growth of N, E and the stabilization
of P.

5. The model with time delays. In this section we focus on the model with
delay (3). To solve equations (3), we define nonnegative continuous initial function
(N(s), P(s), E(s)) on the interval [—7,0] where 7 = max{7;, i = 1,2}, (see, e.g.,
[25]). The basic properties (such as existence, uniqueness, and nonnegativity) of
(3) for such an initial function are the same as for (2) with nonnegative initial data.

We are mainly interested in stability properties and their dependence on the
delays.

LEMMA 5.1. Stability and instability of the trivial and nontrivial critical points
do not depend on the magnitude of both delays. Stability of the semi-trivial point
depends on the magnitude of ;.

Proof. The form of the right-hand side of (3) implies that stability properties of the
trivial solution (0,0,0) do not change-expanding fi(E(t — 7)) and f3(P(t — 72))
at £ =0 and P =0 (see e.g., [25]), we obtain the same free terms as for the case
without delay; namely, f1(0) = —a; and f3(0) = —as. These free terms form the
linear part of the right-hand side for the trivial solution. Hence, the trivial solution
is stable or unstable (depending on the parameters) independent of the delay.
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To calculate the characteristic equation (see, e.g., [25]), we use three matrices:
H(E) 0 0
M= RE - pEN |,
0 0 f3(P)— fi(E)
which is connected with the terms without delay;
0 0 fi(E)N
Mi=1] 00 0 ,
0 0 —fi(E)E

which is connected with the terms with 7; and

0o 0 0
M=[0 0o 0],
0 f(P)E 0

which is connected with the term with 75. Using M, M7, M, we form the following
characteristic equation:

det(M + Mye > + Mae ™ — \I) = 0,

where I is the identity matrix.

For the semi-trivial solution, we obtain that the matrix M +M;e 2 4+ Mye ™™ —
A T is a triangular one. Hence, its determinant is equal to the product of the terms
on the main diagonal; that is, —(as + A\)(0 + A\)(f{(E)Ee~*™ + \) = 0. This yields
that the semi-trivial solution is stable for f|(E)Em < 5 and unstable for greater
71. Stability does not depend on the magnitude of 7. For a detailed derivation, see
[17].

The nontrivial solution (N, P, E) is unstable independent of the magnitude of
both delays—the characteristic equation always has a real positive zero. This equa-
tion reads as

)\3 + )\2(6+Cle—)\ﬁ) + )\(Cltse—kﬁ _i_cze—ATg) — 036_)\(Tl+7—2)-

Looking for the real solutions to the equation above, we see that the right-hand
side is positive a decreasing function of A € R™, while the left-hand side is equal
to 0 for A = 0 and tends to +00 as A — —+oo. This implies the existence of a real
positive solution. |

It should be noted that if the critical point is unstable in the case without delay,
then it is also unstable for every discrete non-zero delays (it can be shown using,
for example, Mikhailov criterion; for details, see [17, 23, 28]).

In [3], it is shown that the Hopf bifurcation in the nontrivial critical point appears
in the model with nonzero delays (3), while for the model without delay (2), it is
not possible.

6. Discussion. We analyzed the stability properties of the simplest models of
vascular tumor dynamics introduced in [3]-the difference between them being the
assumption of delay in the changes in cells growth rate. We have shown the ex-
istence and uniqueness of a positive solution for any positive initial conditions in
both models. In both models, there exist two or three critical points, depending on
the parameters. There is always the trivial point (0,0,0) and the nontrivial point;
the semi-trivial point can appear, depending on parameter values. The nontrivial
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critical point is always unstable. For the model without delay (2), if the semi-trivial
critical point exists then, it is always stable; otherwise, the trivial critical point is
stable.

We have also shown that the existence of the semi-trivial critical point and its
bifurcation from the trivial point are the result of substitution £ = % System
(2) can be reformulated in the original variables (4), having only one trivial critical
point. This point is always stable. The trivial and semi-trivial critical points for
(2) both correspond to this trivial critical point for (4)-the difference being in the
rate of convergence to zero for V and N.

For the system without delay (2), the nontrivial point is either a saddle or un-
stable spiral, so the solution starting around it will grow to infinity, possibly in the
asymptotic direction; see section 3.

For the system with delay (3), the trivial and the nontrivial critical points have
the same stability properties as in the model without delay. The semi-trivial point
(if it exists) will be stable for 7y small enough. In this system, the Hopf bifurcation
is possible for the nontrivial critical point. However, this point will always be
unstable. Typically, the stable Hopf bifurcation appears when the periodic orbit
bifurcates from the stable critical point. This is not the case, but stability of the
Hopf bifurcation is not excluded. We suspect that the solution around the nontrivial
critical point will grow to infinity, possibly oscillating in the plane orthogonal to
the direction of growth.

Both systems predict stability of the trivial or the semi-trivial critical point. This
means that starting close enough to this point, the solution will converge to it. For
solutions starting close enough to the nontrivial critical point, the models suggest
unlimited growth (for both cell number and vessel volume nearly proportionally),
possibly characterized by oscillations in the delayed model. This corresponds to the
behavior of experimentally observed growing vascular tumors that show oscillations
both in tumor and vascular mass during their growth [22].

The characteristics of the critical points in the discussed models rule out the
possibility of tumor-load stabilization, which is sometimes observed experimentally
[14, 32, 33]. Admittedly, cancer growth law is still a controversial phenomenon
[6, 21, 26]. Nevertheless, it can be suggested by this work that angiogenesis per se
is not sufficient for describing asymptotic tumor growth. Some additional processes
(such as vessel maturation and regression) should be introduced to improve this
description. Another limitation of these models is that they do not describe the
initiation of tumor growth and the onset on angiogenesis, since for small tumors
with small vessel volume, the solution will tend to zero. This results from our
model assumptions that neglect both the ability of small tumors to survive and
grow in the absence of blood vessels; and the migration of endothelial cells, which
is important at the onset of the angiogenic process. Such a neglection is justified,
since the models aim to describe the angiogenic phase, in which both tumor size
and vascular mass are relatively large.

We believe that a more comprehensive description can be obtained by including
models that represent additional regulation pathways for angiogenesis. At present,
we are extending our model to include more biological processes involved in angio-
genesis as well as tumor growth at the early stages.
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