Loading [Contrib]/a11y/accessibility-menu.js

Interstitial Pressure And Fluid Motion In Tumor Cords

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 35R35, 92C37, 92C50.

  • This work illustrates the behavior of the interstitial pressure and of the interstitial fluid motion in tumor cords (cylindrical arrangements of tumor cells growing around blood vessels of the tumor) by means of numerical simulations on the basis of a mathematical model previously developed. The model describes the steady state of a tumor cord surrounded by necrosis and its time evolution following cell killing. The most relevant aspects of the dynamics of extracellular fluid are by computing the longitudinal average of the radial fluid velocity and of the pressure field. In the present paper, the necrotic region is treated as a mixture of degrading dead cells and fluid.

    Citation: Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli. Interstitial Pressure And Fluid Motion In Tumor Cords[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 445-460. doi: 10.3934/mbe.2005.2.445

    Related Papers:

    [1] Bertin Hoffmann, Udo Schumacher, Gero Wedemann . Absence of convection in solid tumors caused by raised interstitial fluid pressure severely limits success of chemotherapy—a numerical study in cancers. Mathematical Biosciences and Engineering, 2020, 17(5): 6128-6148. doi: 10.3934/mbe.2020325
    [2] Avner Friedman, Harsh Vardhan Jain . A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences and Engineering, 2013, 10(3): 591-608. doi: 10.3934/mbe.2013.10.591
    [3] Haihua Zhou, Yaxin Liu, Zejia Wang, Huijuan Song . Linear stability for a free boundary problem modeling the growth of tumor cord with time delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2344-2365. doi: 10.3934/mbe.2024103
    [4] Aftab Ahmed, Javed I. Siddique . The effect of magnetic field on flow induced-deformation in absorbing porous tissues. Mathematical Biosciences and Engineering, 2019, 16(2): 603-618. doi: 10.3934/mbe.2019029
    [5] Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241
    [6] Hasitha N. Weerasinghe, Pamela M. Burrage, Dan V. Nicolau Jr., Kevin Burrage . Agent-based modeling for the tumor microenvironment (TME). Mathematical Biosciences and Engineering, 2024, 21(11): 7621-7647. doi: 10.3934/mbe.2024335
    [7] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [8] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [9] Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
    [10] Christophe Minetti, Carlo S. Iorio, Hatim Machrafi . High-frequency temperature pulse-response behavior through a porous nanocomposite scaffold for measuring the uptake of biological fluids. Mathematical Biosciences and Engineering, 2019, 16(5): 4873-4884. doi: 10.3934/mbe.2019245
  • This work illustrates the behavior of the interstitial pressure and of the interstitial fluid motion in tumor cords (cylindrical arrangements of tumor cells growing around blood vessels of the tumor) by means of numerical simulations on the basis of a mathematical model previously developed. The model describes the steady state of a tumor cord surrounded by necrosis and its time evolution following cell killing. The most relevant aspects of the dynamics of extracellular fluid are by computing the longitudinal average of the radial fluid velocity and of the pressure field. In the present paper, the necrotic region is treated as a mixture of degrading dead cells and fluid.


  • This article has been cited by:

    1. Fujun Zhou, Shangbin Cui, Bifurcations for a multidimensional free boundary problem modeling the growth of tumor cord, 2009, 10, 14681218, 2990, 10.1016/j.nonrwa.2008.10.004
    2. Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli, 2007, Chapter 13, 978-3-540-44445-9, 151, 10.1007/978-3-540-44446-6_13
    3. Antonio Fasano, Alessandro Bertuzzi, Carmela Sinisgalli, 2014, Chapter 2, 978-1-4939-0457-0, 27, 10.1007/978-1-4939-0458-7_2
    4. M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for the formation of vascular networks, 2013, 333, 00225193, 174, 10.1016/j.jtbi.2013.04.037
    5. Andrea Tosin, Initial/boundary-value problems of tumor growth within a host tissue, 2013, 66, 0303-6812, 163, 10.1007/s00285-012-0505-1
    6. Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli, 2008, Chapter 7, 978-0-8176-4712-4, 1, 10.1007/978-0-8176-4713-1_7
    7. A. Fasano, A. Bertuzzi, A. Gandolfi, 2006, Chapter 3, 978-88-470-0394-1, 71, 10.1007/88-470-0396-2_3
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2898) PDF downloads(499) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog