[1]
|
T. R. Samatov, V. V. Galatenko, A. Block, M. Y. Shkurnikov, A. G. Tonevitsky, U. Schumacher, Novel biomarkers in cancer: The whole is greater than the sum of its parts, Semin. Cancer Biol., 45 (2017), 50-57.
|
[2]
|
L. C. Böckelmann, U. Schumacher, Targeting tumor interstitial fluid pressure: Will it yield novel successful therapies for solid tumors?, Expert Opin. Ther. Targets, 23 (2019), 1-10.
|
[3]
|
M. Heine, B. Freund, P. Nielsen, C. Jung, R. Reimer, H. Hohenberg, et al., High interstitial fluid pressure is associated with low tumour penetration of diagnostic monoclonal antibodies applied for molecular imaging purposes, PLoS One, 7 (2012), e36258.
|
[4]
|
M. Heine, P. Nollau, C. Masslo, P. Nielsen, B. Freund, O.T. Bruns, et al., Investigations on the usefulness of CEACAMs as potential imaging targets for molecular imaging purposes, PLoS One, 6 (2011), e28030.
|
[5]
|
A. J. Primeau, A. Rendon, D. Hedley, L. Lilge, I. F. Tannock, The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors, Clin. Cancer Res., 11 (2005), 8782-8788.
|
[6]
|
L. Böckelmann, C. Starzonek, A. C. Niehoff, U. Karst, J. Thomale, H. Schlüter, et al., Detection of doxorubicin, cisplatin and therapeutic antibodies in formalin-fixed paraffin-embedded human cancer cells, Histochem. Cell Biol., 153 (2020), 367-377.
|
[7]
|
J. M. Brown, W. R. Wilson, Exploiting tumour hypoxia in cancer treatment, Nat. Rev. Cancer, 4 (2004), 437-447.
|
[8]
|
F. Pajonk, E. Vlashi, W. H. McBride, Radiation resistance of cancer stem cells: The 4 R's of radiobiology revisited, Stem Cells, 28 (2010), 639-648.
|
[9]
|
J. K. Saggar, I. F. Tannock, Chemotherapy rescues hypoxic tumor cells and induces their reoxygenation and repopulation-an effect that is inhibited by the hypoxia-activated prodrug TH-302, Clin. Cancer Res., 21 (2015), 2107-2114.
|
[10]
|
B. Ribba, E. Watkin, M. Tod, P. Girard, E. Grenier, B. You, et al., A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers, Eur. J. Cancer, 47 (2011), 479-490.
|
[11]
|
N. D. Evans, R. J. Dimelow, J. W. T. Yates, Modelling of tumour growth and cytotoxic effect of docetaxel in xenografts, Comput. Methods Programs Biomed., 114 (2014), e3-e13.
|
[12]
|
S. Benzekry, A. Gandolfi, P. Hahnfeldt, Global dormancy of metastases due to systemic inhibition of angiogenesis, PLoS One, 9 (2014), e84249.
|
[13]
|
H. Enderling, M. A. J. Chaplain, A. R. A. Anderson, J. S. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence, J. Theor. Biol., 246 (2007), 245-259.
|
[14]
|
A. Bethge, U. Schumacher, G. Wedemann, Simulation of metastatic progression using a computer model including chemotherapy and radiation therapy, J. Biomed. Inform., 57 (2015), 74-87.
|
[15]
|
R. Brady, H. Enderling, Mathematical models of cancer: When to predict novel therapies, and when not to, Bull. Math. Biol., 81 (2019), 3722-3731.
|
[16]
|
A. Akanuma, Parameter analysis of Gompertzian function growth model in clinical tumors, Eur. J. Cancer, 14 (1978), 681-688.
|
[17]
|
A. K. Laird, Dynamics of tumour growth, Br. J. Cancer, 18 (1964), 490-502.
|
[18]
|
V. P. Collins, R. K. Loeffler, H. Tivey, Observations on growth rates of human tumors, AJR Am. J. Roentgenol., 76 (1956), 988-1000.
|
[19]
|
L. von Bertalanffy, Quantitative laws in metabolism and growth, Q. Rev. Biophys., 32 (1957), 217-231.
|
[20]
|
S. Michelson, A. S. Glicksman, J. T. Leith, Growth in solid heterogeneous human colon adenocarcinomas: Comparison of simple logistical models, Cell Tissue Kinet, 20 (1987), 343-355.
|
[21]
|
J. A. Spratt, D. von Fournier, J. S. Spratt, E. E. Weber, Decelerating growth and human breast cancer, Cancer, 71 (1993), 2013-2019.
|
[22]
|
R. H. Reuning, R. A. Sams, R. E. Notari, Role of pharmacokinetics in drug dosage adjustment. I. pharmacologic effect kinetics and apparent volume of distribution of digoxin, J. Clin. Pharmacol .New Drugs, 13 (1973), 127-141.
|
[23]
|
A. Rohatgi, WebPlotDigitizer-Extract Data from Plots, Images, and Maps. Available from: https://automeris.io/WebPlotDigitizer/.
|
[24]
|
T. Brodbeck, N. Nehmann, A. Bethge, G. Wedemann, U. Schumacher, Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model, Mol. Cancer, 13 (2014), 244.
|
[25]
|
A. V. Chvetsov, L. Dong, J. R. Palta, R. J. Amdur, Tumor-volume simulation during radiotherapy for head-and-neck cancer using a four-level cell population model, Int. J. Radiat. Oncol. Biol. Phys., 75 (2009), 595-602.
|
[26]
|
R. Ruggieri, A. E. Nahum, The impact of hypofractionation on simultaneous dose-boosting to hypoxic tumor subvolumes, Med. Phys., 33 (2006), 4044-4055.
|
[27]
|
K. Nakamura, A. Brahme, Evaluation of fractionation regimens in stereotactic radiotherapy using a mathematical model of repopulation and reoxygenation, Radiat. Med., 17 (1999), 219-225.
|
[28]
|
T. Frenzel, B. Hoffmann, R. Schmitz, A. Bethge, U. Schumacher, G. Wedemann, Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model, PLoS One, 12 (2017), e0187144.
|
[29]
|
K. Iwata, K. Kawasaki, N. Shigesada, A dynamical model for the growth and size distribution of multiple metastatic tumors, J. Theor. Biol., 203 (2000), 177-186.
|
[30]
|
J. S. Spratt, J. S. Meyer, J. A. Spratt, Rates of growth of human solid neoplasms: Part I, J. Surg. Oncol., 60 (1995), 137-146.
|
[31]
|
B. Hoffmann, T. Lange, V. Labitzky, K. Riecken, A. Wree, U. Schumacher, et al., The initial engraftment of tumor cells is critical for the future growth pattern: a mathematical study based on simulations and animal experiments, BMC Cancer, 20 (2020), 524.
|
[32]
|
M. Simeoni, P. Magni, C. Cammia, G. De Nicolao, V. Croci, E. Pesenti, et al., Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents, Cancer Res., 64 (2004), 1094-1101.
|
[33]
|
I. F. Tannock, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour., Br. J. Cancer, 22 (1968), 258-273.
|
[34]
|
R. Seifert, Basic Knowledge of Pharmacology, Springer International Publishing, 2019.
|
[35]
|
K. D. Tripathi, Essentials of Medical Pharmacology, Jaypee Brothers Medical Publishers, 2013.
|
[36]
|
G. N. Naumov, J. L. Townson, I. C. MacDonald, S. M. Wilson, V. H. C. Bramwell, A. C. Groom, et al., Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases, Breast Cancer Res. Treat., 82 (2003), 199-206.
|
[37]
|
W. Sun, L. M. Schuchter, Metastatic melanoma, Curr. Treat Options Oncol., 2 (2001), 193-202.
|
[38]
|
J. C. Panetta, J. Adam, A mathematical model of cycle-specific chemotherapy, Math. Comput. Model, 22 (1995), 67-82.
|