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Abstract. This work illustrates the behavior of the interstitial pressure and
of the interstitial fluid motion in tumor cords (cylindrical arrangements of
tumor cells growing around blood vessels of the tumor) by means of numerical
simulations on the basis of a mathematical model previously developed. The
model describes the steady state of a tumor cord surrounded by necrosis and its
time evolution following cell killing. The most relevant aspects of the dynamics
of extracellular fluid are by computing the longitudinal average of the radial
fluid velocity and of the pressure field. In the present paper, the necrotic region
is treated as a mixture of degrading dead cells and fluid.

1. Introduction. Blood flow in the tumor vasculature plays a crucial role in tu-
mor growth and in the therapy. Blood carries oxygen and nutrients necessary for
cell viability and proliferation and allows drugs or other therapeutic agents to be de-
livered inside the tumor. To reach their target cells, these agents must extravasate
and be transported by diffusion and by the convection caused by the motion of
extracellular fluid. Convective transport becomes important in the case of novel
therapeutic agents characterized by large molecular weight or size, such as the mon-
oclonal antibodies or the viral particles used as vectors in gene therapy [13]. It is
known that most solid tumors exhibit high interstitial fluid pressure. In a set of
ten experimental and human tumors, pressure values ranging from 4.5 to 38 mmHg
have been reported, the majority of these values (7 out of 10) being between 10
and 23mmHg [13]. The high interstitial pressure is thought to be a barrier for fluid
extravasation and for an efficient convective transport. Mathematical models that
describe the interstitial pressure field and the macroscopic fluid flow in spherical
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tumors have been proposed in [4, 20], assuming a continuous distribution of fluid
sources in the tumor mass. The localized discrete nature of the fluid sources has
been taken into account in [3], where a pair of countercurrent vessels and an ideal
two-dimensional regular mesh of vessels were modelled.

In our work, extracellular fluid motion and interstitial pressure are studied in a
regular array of tumor cords, each cord being surrounded by necrosis. Although
the vascular network of tumors is in general highly irregular, in some human and
experimental tumors it is possible to observe cylindrical arrangements of tumor
cells around central blood vessels (tumor cords [19, 12, 16]). The decrease of oxy-
gen and nutrients as the distance from the central vessel increases produces the
formation of necrosis in the regions far from the vessels. A mathematical model
that describes the behavior of a system of tumor cords under the influence of a
therapeutic treatment was proposed in [7]. That model, based on the continuum
approach, included the diffusion of oxygen from the central vessel and the cell mo-
tion and was used to predict the cord response to single-dose cytotoxic treatments
[6]. The computation of the flow of interstitial fluid was avoided in [6, 7], confining
the study to cases in which drug convection by the fluid is negligible. In a recent
paper [8], we incorporated in the previous theory the relevant information about
the flow of interstitial fluid within the tumor cord and the associated pressure field.
Moreover, unlike [6, 7], the necrotic region was viewed simply as a chamber filled
with a homogeneous fluid whose uniform pressure is related to the mechanical in-
teraction of the tumor with the surrounding tissue. Existence and uniqueness of
the stationary solution of this model was proved, together with the existence and
uniqueness of the solution for the time-dependent problem.

In this paper, we summarize the model proposed in [8] (sections 2 and 3), and
provide numerical solutions of model equations. Thus we can illustrate the effect
of parameter changes on the behavior of interstitial pressure and interstitial fluid
motion, both in the stationary state (section 4) and during the time evolution
following the treatment (section 5). A new description of the necrotic region is here
presented, which, in contrast with [8], accounts for the presence in that region of a
mixture of degrading dead cells and fluid.

2. The mathematical model. In this section we summarize, for the reader’s con-
venience, the tumor cord model proposed in [8], and we present the new description
of the necrotic region. We consider an ideal regular array of parallel and identical
tumor cords inside the tumor mass, as in the Krogh model of microcirculation [14],
each cord being separated from others by a region of necrosis. Vessels are assumed
to be displaced as the tumor mass is growing or regressing, and the treatment is
assumed not to degrade the tumor vasculature. We assume cylindrical symmetry
around the axis of the central blood vessel, the radial coordinate r varying between
the radius r0 of the blood vessel and the unknown outer boundary B of the necrotic
region surrounding each cord. The radius of the interface between the cord and the
necrosis is denoted by ρN . Because of the radial symmetry of the system of cords,
no exchange of matter occurs through the boundary r=B. The axial coordinate z
will range in the interval [−H,H] (see Fig. 1). All the quantities involved depend
at most on r, z, and the time t. Only one species of nutrient is considered, as in
previous models of tumor growth (see [10, 5, 2, 11]), and we identify this critical
nutrient with oxygen. We do not distinguish the intracellular from the extracellular
concentration of oxygen, and we denote by σ its local concentration.
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Figure 1. Scheme of the tumor cord geometry: L, tumor cord;
N, necrotic region. The vector u indicates the cellular velocity; the
vector v indicates the extracellular fluid velocity.

2.1. Cell populations, oxygen diffusion, and cord radius. Three components
are present in the cord :

1. The viable cells, which are subdivided into proliferating cells (P ) and quies-
cent cells (Q) in view of their possibly different sensitivity to treatment. Cell
decycling into quiescence and cell recruitment from quiescence into prolifera-
tion are assumed to be regulated by the oxygen concentration, as suggested
by experimental observations [1, 18] and proposed in [11].

2. The dead cells resulting from treatment, which are present in the form of
apoptotic bodies (A). Unlike the approach in [6, 7], spontaneous cell death
within the viable region is disregarded, since its extent appears to be small
[16].

3. The extracellular fluid filling interstitial space.

Describing the system as a continuum, we introduce the fractions of volume occu-
pied locally by these components. These fractions are denoted by νP , νQ, νA, and
νE , respectively. Supposing no voids, we have

νP + νQ + νA + νE = 1 .

As in [6, 7], it is assumed that (i) the volume fraction of extracellular fluid in the
cord is constant even during treatment; (ii) dead cells move at the same velocity
as living cells; (iii) the cell velocity is radial; (iv) the oxygen concentration, the
volume fractions νP , νQ, νA, and the velocity of cellular material do not depend
on the longitudinal coordinate z; (v) cells die if σ reaches a death threshold σN .
A discussion on the above assumptions was given in [8]. For the cell velocity field
u, we have, in view of assumptions (iii) and (iv), u = (ur, uz) = (u(r, t), 0). The
velocity field of the fluid component is denoted by v=(vr(r, z, t), vz(r, z, t)).
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Making the reasonable assumption that all the components have the same mass
density and are incompressible, the mass balance equations can be written as fol-
lows:

∂νP

∂t
+∇ · (νP u) = χνP + γ(σ)νQ − λ(σ)νP − µP (r, t)νP , (1)

∂νQ

∂t
+∇ · (νQ u) = −γ(σ)νQ + λ(σ)νP − µQ(r, t)νQ , (2)

∂νA

∂t
+∇ · (νA u) = α

[
µP (r, t)νP + µQ(r, t)νQ

]− µAνA , (3)

νE∇ · v = (1− α)
[
µP (r, t)νP + µQ(r, t)νQ

]
+ µAνA − χνP . (4)

In equations (1)–(4), χ > 0 is the rate constant of volume increment due to cell
proliferation; the functions γ(σ) and λ(σ) are the rates of the transitions Q→ P
and P →Q, respectively; µP and µQ are death rates that mimic the killing effects
of drugs or radiation, taken here as assigned functions of r and t; α < 1 is the
fraction of the volume of a cell dying by apoptosis, which is converted into apoptotic
bodies, the fraction 1−α going to the extracellular liquid (a loss of volume has been
observed indeed during the early phase of apoptosis [15]); µA > 0 is the rate of
volume loss due to degradation of apoptotic bodies to a liquid waste. According
to the experimental evidence, the function λ(σ) will be nonincreasing and γ(σ)
nondecreasing. In particular, we assign two threshold values for σ, σQ < σP , and
we assume λ = λmax and γ = γmin for σ≤ σQ, λ = λmin and γ = γmax for σ≥ σP ,
with λmax >λmin≥0 and γmax >γmin≥0. In the interval (σQ, σP ), λ(σ) decreases
linearly and γ(σ) increases linearly.

By setting ν? = νP +νQ+νA = 1−νE , which is constant in view of assumption
(i), we can derive the equation for u(r, t) by summing (1)–(3). We obtain

ν? 1
r

∂

∂r
(ru) = χνP − (1− α)(µP νP + µQνQ)− µA(ν? − νP − νQ) . (5)

Equation (5) will be completed by the boundary condition

u(r0, t) = 0 .

Concerning the equation for σ, diffusion is the dominant transport mechanism
for oxygen, and it occurs in a quasi-stationary regime because of the high oxygen
diffusivity [19] and the comparatively slow cellular dynamics. Thus we have

∆σ = fP (σ)νP + fQ(σ)νQ ,

with the boundary conditions
σ(r0, t) = σb (6)

∂σ

∂r

∣∣∣∣
r=ρN (t)

= 0 , (7)

where fP (σ), fQ(σ) denote the ratio between the consumption rate per unit volume
of proliferating and quiescent cells, respectively, and the diffusion coefficient. We
set fP (σ)≥ fQ(σ) and require fQ(σN ) > 0. At the inner boundary r = r0 (i.e., at
the vessel wall), for simplicity’s we have the (constant) oxygen blood concentration
σb >σP , although a more realistic flux condition might be imposed.

To determine the interface r=ρN (t), we recall that the necrotic material cannot
be converted back to living cells and that assumption (v) precludes having viable
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cells when σ is smaller than σN . Thus the following inequalities must be satisfied:

u(ρN (t), t)− ρ̇N (t) ≥ 0 , (8)
σ(ρN (t), t) ≥ σN . (9)

Therefore, from (8), two cases are possible: u(ρN , t)− ρ̇N > 0 or u(ρN , t)− ρ̇N = 0.
If u(ρN , t)−ρ̇N >0 (i.e., if the cells cross the interface ρN (t)), the cord boundary is
defined by the condition

σ(ρN (t), t) = σN , (10)
and the interface is a “nonmaterial” free boundary. This case occurs, for instance,
in the stationary state in the absence of treatment. Otherwise, the cord boundary
becomes a “material” free boundary defined by

ρ̇N = u(ρN (t), t) . (11)

The switch to the material interface may intervene when a sudden massive destruc-
tion of cells rapidly lowers oxygen consumption and the interface ρN (t) defined by
(10) tends to acquire a velocity larger than u(ρN (t), t). The material boundary (11)
is, however, subjected to the constraint (9) so that if σ(ρN (t), t) tends to drop be-
low σN during the cord repopulation, the free boundary must become nonmaterial
again.

2.2. Extracellular fluid motion and interstitial pressure. It is assumed that
(vi) the extracellular fluid flow is governed by the Darcy’s law, consistently with
the hypothesis that the cellular components of the cord form a porous structure
(cf. [8]). The use of Darcy’s law is widely accepted to describe the interstitial fluid
flow (see [17]). According to this assumption, the velocity v of the extracellular
fluid component is given by

(1− ν?)(v − u) = −κ∇p̂ , (12)

where p̂(r, z, t) is the fluid pressure and κ > 0 is the hydraulic conductivity of the
tissue. By summing (1)–(4), we obtain the overall incompressibility equation

∇ · (v +
ν?

1− ν?
u) = 0 . (13)

Instead of computing p̂(r, z, t), which satisfies an elliptic equation that can be de-
rived by taking the divergence of equation (12) and using (13), we introduced an
approximation that simplifies the problem of determining the longitudinal flow.
Defining the longitudinal average

v(r, t) =
1

2H

∫ H

−H

vr(r, z, t) dz

and taking the longitudinal average of equation (13), we obtain
1
r

∂

∂r
(rv) +

1
2H

[vz(r,H, t)− vz(r,−H, t)] = − ν?

1− ν?

1
r

∂

∂r
(ru) . (14)

The volumetric efflux of liquid (per unit area) from the cord ends and at the radial
distance r is approximated by

(1− ν?)[vz(r,H, t)− vz(r,−H, t)] = 2ζout(r)(p(r, t)− p∞) , (15)

where ζout(r) is an assigned nonnegative function that represents the mean con-
ductivity of the tissues traversed by the outgoing flux, p∞ is a “far field” pressure
identifiable with the pressure in the lymphatic vessels, and p(r, t) is the longitu-
dinal average of p̂. Although the draining effect is likely to become active at a
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certain distance from the blood vessel, we suppose here for simplicity ζout(r)=ζout

constant.
Having replaced the pressure with its longitudinal average, we obtain, from (14),

(15), and (5), the following equation for the averaged radial velocity field v(r, t):

1
r

∂

∂r
(rv) = − 1

1−ν?

[
χνP−(1−α)(µP νP +µQνQ)−µA(ν?−νP−νQ)+

ζout

H
(p−p∞)

]
.

(16)
At this point, the longitudinal average of the radial component of the Darcy equa-
tion (12),

(1− ν?)(v − u) = −κ
∂p

∂r
,

yields the following equation for p:

p(r, t) = p0(t)−
1−ν?

κ

∫ r

r0

[v(r′, t)− u(r′, t)] dr′ ,

where p0(t) = p(r+
0 , t) is the pressure immediately outside the vessel wall; p0(t) is

actually unknown, and the equation for p requires a condition at r =ρN (t), which
we will see in the next section. The equation (16) for v is complemented by the
boundary condition at the vessel wall,

(1− ν?)v(r0, t) = ζin(pb − p0(t)) ,

where ζin is the hydraulic conductivity of the wall and pb > p∞ represents the
longitudinal mean of the hydraulic pressure in the blood, corrected according to
the jump of osmotic pressure.

2.3. The necrotic region. To model the necrotic region (N), in [6, 7] we assumed
that an ideal arrangement of dead cells is maintained with a constant volume frac-
tion equal to ν?. This assumption is certainly questionable in view of the degrada-
tion process of dead cells and of the consequent loss of a coherent structure, and
in [8] we took the very simplified and opposite view of representing N as a region
completely filled with an incompressible viscous fluid having a uniform pressure.
In this paper, still looking at the necrotic region as a compartment with uniform
pressure, we take the more realistic approach of distinguishing the solid (cellular)
from the liquid component, allowing the overall volume fraction of the cellular com-
ponent to change. Since the necrotic cells retain some structural integrity before
degradation [15], it appears reasonable that this fraction cannot exceed a maximal
value less than the unity, corresponding to a close packing of cells. For simplicity,
once again we take this limiting value equal to ν?. Necrotic cells are assumed to be
degraded to liquid with a rate constant µN .

In our geometry, the region N has the shape of a hollow cylinder with fixed bases
z =±H and moving lateral boundaries r =ρN (t) and r =B(t), both unknown. As
previously stated, no flux takes place through the latter boundary. Let us denote
by V c

N the volume of the cellular component and by V l
N the volume of the liquid

component in N. Disregarding the loss of necrotic cells through the ends at z=±H,
we can write the mass balance as

V̇ c
N = 4HπρNν?[u(ρN , t)− ρ̇N ]− µNV c

N , (17)

V̇ l
N = 4HπρN (1− ν?)[v(ρN , t)− ρ̇N ] + µNV c

N − qout(t) , (18)
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where qout is the volume efflux of liquid at z= ±H. Similar to (15), we express qout

as follows:

qout = 2ζN
out

V l
N

V c
N + V l

N

π(B2 − ρ2
N )(pN − p∞) , (19)

where ζN
out is a positive constant and pN is the pressure in N. We will take ζN

out≥
ζout/(1−ν?), the strict inequality indicating a possibly facilitated efflux from the
necrotic region. Since we exclude the formation of voids, the volume of the necrotic
region, VN =2Hπ(B2−ρ2

N ), is equal to V c
N +V l

N . Then the total volume balance in
N is expressed by

V̇N = 4HπρN [(1− ν?)v(ρN , t) + ν?u(ρN , t)− ρ̇N ]− ζN
out

H
(VN − V c

N )(pN − p∞)

and the above equation can be rewritten as a differential equation for B2,

dB2

dt
= 2ρN [(1−ν?)v(ρN , t)+ν?u(ρN , t)]− ζN

out

H

(
B2−ρ2

N −
V c

N

2Hπ

)
(pN −p∞) , (20)

which has to be coupled to equation (17).
Let us point out that although (17) guarantees V c

N ≥0 because of (8), one cannot
exclude that the limitation on the cellular fraction

V c
N

V c
N + V l

N

≤ ν? (21)

can be violated. Indeed, if too much liquid is removed or too much solid mate-
rial is supplied, inequality (21) could be violated, which in our setting would be
unphysical. Thus (21) has to be imposed as a constraint, the balance equations
(17)–(18) keeping their validity. When (21) holds in the strict sense, we assume
that the pressure pN is determined by the displacement of the tissue that surrounds
the whole tumor, whose size is likely to increase as B increases. Thus we write

pN (t) = Ψ(B(t)) , (22)

where Ψ(B) is an increasing function with Ψ(B)≥p∞, and equations (17) and (20),
together with (22), describe the evolution of B. On the contrary, when (21) takes
the equality sign, V l

N remains defined as

V l
N =

1− ν?

ν?
V c

N , (23)

with V c
N determined via equation (17), and the role of equation (18) is to provide

qout(t). Hence pN (t) becomes a function of B(t) no longer through (22) but through
(23), (18), and (19). When the cellular fraction takes the limiting value ν?, indeed,
the action of the surroundings becomes supported by the cellular component, while
the liquid pressure adjusts itself to preserve the volume balance, dropping neces-
sarily below Ψ(B) and reducing qout. In this regime we have

pN (t) = p∞ +
H

ζN
out

(
2ρN [v(ρN , t)− u(ρN , t)]

B2 − ρ2
N

+
µN

1− ν?

)
, (24)

B(t) =
(

ρ2
N +

V c
N

2Hπν?

)1/2

. (25)

Note that in this situation a stress on the solid component of the whole region
r0 < r < B is created by the contact with the solid component of the neighboring
cords at the boundary r=B. As a result, a stress is exerted on the central vessel,
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which may have further consequences on the evolution of the tumor. For the sake
of simplicity, we ignore this phenomenon and avoid the computation of the stresses.

During the evolution, equations (24) and (25) may lead in turn to a value of pN

that violates the constraint
pN (t) ≤ Ψ(B(t)) , (26)

which is imposed by the deformation of the surrounding tissues. Then the system
has to switch to the previous regime governed by (22) and (20), with V l

N evolving
according to (18) and constrained by (21). The switch has a clear physical expla-
nation: the liquid component resumes the role of the stress supporting component
in the necrotic region. To summarize, the evolution of the necrotic region takes
place under a pair of unilateral contraints (i.e., the inequalities (21) and (26)), that
decide which the correct governing equations are.

Assuming that the longitudinal average of the pressure is continuous across r=
ρN , we will impose

p(ρN , t) = pN (t) ,

which gives the only missing information to determine the averaged pressure field
in the cord.

3. The model in nondimensional variables. It is convenient to summarize the
model equations, using the following nondimensional and normalized variables:

t′ = tχ , r′ =
r

r0

, z′ =
z

H
,

u′ =
u

χr0

, v′ =
v

χr0

, p′ =
p− p∞
pb − p∞

, σ′ =
σ

σb

,

ν′P =
νP

ν?
, ν′Q =

νQ

ν?
, ν′A =

νA

ν?
.

All the radial lengths, such as ρN and B, are rescaled by the radius r0, and the
volumes are rescaled by r2

0H; σb is used to rescale the thresholds on the oxygen
concentration (σP , σQ, σN ), and the transformation for p is used for p0 , pN . All the
rate costants, χ, γ, λ, µP , µQ, µA, µN , are rescaled by χ. For the other parameters
and functions we have

κ′ = κ
pb − p∞

χr2
0

, ζ ′in = ζin

pb − p∞
χr0

, ζ ′out = ζout

pb − p∞
χH

,

Ψ′(B′) =
Ψ(B′r0)− p∞

pb − p∞
, f ′P,Q(σ′) =

r2
0

σb

ν?fP,Q(σ′σb) .

For the sake of simplicity, the primes will be omitted in the following, and we will
use the same symbol for the nondimensional and the dimensional quantity. The
complete set of model equations is given below. Since, as it is easy to check, if (5)
holds, any solution of equations (1)–(3) will have a sum equal to ν? provided that
the initial conditions satisfy this property, the equation for νA will be omitted. For
r∈(1, ρN ), we have

∂νP

∂t
+ u

∂νP

∂r
= νP

[
(1− νP ) + (1− α)(µP νP + µQνQ) + µA(1− νP − νQ)

−λ(σ)− µP

]
+ γ(σ)νQ , (27)

∂νQ

∂t
+ u

∂νQ

∂r
= νQ

[−νP + (1− α)(µP νP + µQνQ) + µA(1− νP − νQ)

−γ(σ)− µQ

]
+ λ(σ)νP , (28)
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1
r

∂

∂r
(ru) = νP − (1− α)(µP νP + µQνQ)− µA(1− νP − νQ) , (29)

∆σ = fP (σ)νP + fQ(σ)νQ , (30)
1
r

∂

∂r
(rv) = − ν?

1−ν?

[
νP − (1− α)(µP νP + µQνQ)− µA(1−νP−νQ) +

1
ν?

ζout p

]
,

p(r, t) = p0(t)−
1−ν?

κ

∫ r

1

[v(r′, t)− u(r′, t)] dr′ ,

p(ρN , t) = pN (t) ,

dV c
N

dt
= 4πρNν?[u(ρN , t)− ρ̇N ]− µNV c

N . (31)

Moreover, either
pN (t) = Ψ(B(t)) ,

dB2

dt
= 2ρN [(1− ν?)v(ρN , t) + ν?u(ρN , t)]− ζN

out

(
B2 − ρ2

N − V c
N

2π

)
Ψ(B) , (32)

under the condition
V c

N

2π(B2 − ρ2
N )

< ν? ,

or

pN (t) =
1

ζN
out

(
2ρN [v(ρN , t)− u(ρN , t)]

B2 − ρ2
N

+
µN

1− ν?

)
,

B(t) =
(

ρ2
N +

V c
N

2πν?

)1/2

,

under the condition
pN (t) ≤ Ψ(B(t)) .

The boundary and interface conditions for σ and v are those given in section 2,
suitably transformed by recalling that in the nondimensional setting r0 =1, σb =1,
pb =1, and p∞=0. The results that follow are given in terms of the nondimensional
variables and parameters.

4. The steady state. In the absence of treatment (µP = µQ = 0), the only cell
populations present in the cord at the stationary state are the viable proliferating
and quiescent subpopulations, and νP +νQ =1. Thus, from (27)–(29) we obtain for
νP the equation

u
∂νP

∂r
= νP (1− νP )− λ(σ)νP + γ(σ)(1− νP ) , 1<r<ρN , (33)

where u(r) is given by

ru(r) =
∫ r

1

r′νP (r′) dr′ . (34)

Equations (33) and (34) must be solved together with equation (30), with the
boundary conditions (6), (7), and (10), to obtain the time-independent solution
νP (r), u(r), σ(r) and the constant cord radius ρN (Problem A). The existence
and uniqueness of this stationary solution has been proved in [8] under a slight
restriction on λ and γ. Note that equation (33) is degenerate at r = r0 because
u(r0)=0. However, according to our assumptions on the shape of λ(σ) and γ(σ),
there will exist an inner region of the cord (where σ>σP ) in which these transition
rates are constant. Thus, the solution νP is constant for 1<r<ρP , with the radius
ρP such that σ(ρP )=σP . Moreover, it can be proved that the volume fraction νP

is decreasing with r and remains positive in the interval (ρP , ρN ], even if γmin =0.
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The numerical solution of Problem A was computed according to a procedure
that suitably modifies the one described in [6]. In all the simulations presented
here, the functions fP and fQ are assumed equal, and fP (σ) has the form

fP (σ) = F
σ

K + σ
,

which we derived from [9].
Once Problem A is solved, V c

N can be computed as 4πρNν?u(ρN )/µN , and we
can obtain the functions v(r), p(r) in [1, ρN ] and the constants p0, pN , and B,
satisfying the constraints (21) and (26) and the equations (Problem B)

1
r

∂

∂r
(rv) = − 1

1−ν?

(
ν?νP + ζout p

)
, (35)

v(1) =
1

1− ν?
ζin(1− p0) , (36)

p(r) = p0 −
1−ν?

κ

∫ r

1

[v(r′)− u(r′)] dr′ , (37)

p(ρN ) = pN ,

and either
pN = Ψ(B) ,

ζN
out

(
B2 − ρ2

N − 2ρN

u(ρN )ν?

µN

)
Ψ(B) = 2ρN [(1− ν?)v(ρN ) + ν?u(ρN )] (38)

or

pN =
1

ζN
out

[2ρN [v(ρN )− u(ρN )]
B2 − ρ2

N

+
µN

1− ν?

]
, (39)

B = B? =
[
ρ2

N + 2ρN

u(ρN )
µN

]1/2
.

Equation (38) is obtained from equations (31) and (32) written at the stationary
state. Note that if the constraint (21) is satisfied in the strict sense, B will be
larger than B?. In [8] the existence and uniqueness of the solution of Problem B
was proved in the limit case of an immediate degradation of dead cells entering N,
that is, in the case of µN →∞.

The numerical solution of Problem B is based on the fact that the solution of
equations (35)–(37) depends univocally on p0. This fact suggested the following
fixed-point iterative procedure. Let pk

0 denote the value of p0 at the step k. We go
through the following procedure:

• Given pk
0 , we solve the integro-differential equation for v obtained by substi-

tuting (37) into (35), with the initial condition (36), using the implicit Euler
method.

• We find Bk by solving equation (38) for B through the bisection method and
compute pk

N =Ψ(Bk).
• From (37) written for r=ρN , setting p(ρN )=pk

N we compute p0 = p̄k
0 .

• We update p0 by means of

pk+1
0 = εp̄k

0 + (1− ε)pk
0 . (40)
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In (40), the parameter ε≤1 is suitably chosen to guarantee convergence. Next the
condition (21) is checked, and if it is not satisfied, the procedure is repeated setting
Bk = B? and computing pk

N through equation (39). For the function Ψ(B) we have
chosen the expression

Ψ(B) = e(B − 1)2

to approximate the nonlinear elasticity of biological tissues, with e being a given
elasticity coefficient.

In the numerical simulations, the adimensional parameter values were chosen
with reference to the following baseline values of the dimensional parameters that,
whenever possible, have been selected according to available experimental data:
r0 = 20µm [16], H = 300 µm, ν? = 0.85, χ = ln 2/24 h−1, pb = 20 mmHg, p∞ =
0mmHg, σb =40 mmHg, F =1.51 · 10−2 mmHg/µm2 [9], K =4.32 mmHg [9], ζin =
10.08 µm·mmHg−1·h−1 [4], and κ in the range 2.63·103÷86.4·103 µm2·mmHg−1·h−1

[17].
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Figure 2. Panel A, profiles of νP (r) and u(r): for pair 1 (λmax =1
and σP = 0.375), νP is solid line and u is dotted line; for pair 2
(λmax =2 and σP =0.5), νP is dashed line and u is dashed-dotted
line. Panel B, profiles of p(r) and v(r): for pair 1, p is solid line
and v is dotted line; for pair 2, p is dashed line and v is dashed-
dotted line. Other parameters: σQ =0.25, σN =0.0125, F =0.128,
K =0.108, γmax =4, λmin =γmin =0, ν? =0.85, ζin =400, ζout =2,
κ=3000, e=12 · 10−3, ζN

out =ζout/(1−ν?), and µN =1.

Figure 2A shows the profiles of νP (r) and u(r) for two different pairs λmax and
σP , assuming λmin = γmin = 0. Since λmin = 0, νP (r) = 1 until r is less than ρP ,
and then νP decreases, the larger slope corresponding to the larger value of λmax.
In the case of λmax = 2 and σP = 0.5, the percentage of proliferating cells in the
cord is reduced (0.210 vs. 0.487), and consequently the cell velocity u is also lower.
The corresponding profiles of p(r) and v(r) are shown in Figure 2B. The pressure
p0 is a substantial fraction of pb, and p(r) exhibits a slight decrease with r, thus
retrieving the experimental observation of a large interstitial pressure. The slope
of p depends on the Darcy coefficient: the assumed value of κ is in the typical
range of tumor tissues [17]. The fluid velocity v is very high with respect to the cell
velocity u. When the fraction of proliferating cells is larger and u(ρN ) is increased,
the model predicts an increase of B. The actual increment is small (8.51 vs. 8.26),
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because the relatively high value of the rate constant µN causes the presence of a
large amount of liquid in the necrotic region (V c

N/VN =0.46). As a consequence of
the increase of B, a limited increase of pressure in the necrotic region is predicted,
together with an increase in the whole profile p(r). Thus the influx of fluid from
the central vessel is decreased, reducing the velocity v.
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Figure 3. Panels A and B: p0 and B as a function of ζout for
different values of e. Panels C and D: p0 and B as a function of
ζin for different values of κ, with e = 9 · 10−3. Other parameters
are as in Figure 2, with λmax =1 and σP =0.375.

Since we do not have experimental data on the values of the parameters ζout and
e, and because ζin and κ may present large variations in different tumors, we have
explored numerically the effect of changes in these parameters. Figure 3 reports
the predicted changes of p0 (taken as representative of interstitial pressure) and of
B. As expected, when ζout increases (facilitating the outflow from the cord) B and
p0 decrease. However, when the stiffness of the surrounding tissue is higher, an
increased interstitial pressure may be accompanied by a diminished radius of the
necrotic region because pN may be increased (panels A and B). Panels C and D
show instead that as ζin increases, both B and p0 increase. A reduced κ produces
an increase in p0, because a steeper gradient of p is established. A higher value of
p0 counteracts the advantage of a higher ζin in producing a higher influx from the
vessel, so for low κ values, the increase in B with ζin is smaller.

The effect of parameter changes on the mean fluid velocity is illustrated in Figure
4. As expected, the mean fluid velocity increases as ζin increases, but this increase
is markedly modulated by changes in the other parameters. When ζout increases,
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Other parameters are as in Figure 2, with λmax =1 and σP =0.375.

two competing effects can occur: the radial component of fluid velocity decreases
to a greater extent because of the facilitated efflux from the cord ends, and the
initial fluid velocity v(1) increases because p0 decreases (see Fig. 3A). The resulting
effect is in general an increase of the mean v as shown by Figure 4A. The increase
in mean v with ζin appears to be enhanced as κ increases (Fig. 4B), since, as seen
in Figure 3C, higher κ values give lower p values and then a greater v(1).

In all the above numerical simulations, note that the constraint (21) was never
violated, although it is not difficult to find instances in which the opposite is true,
with parameter values still chosen in a reasonable range.

5. Change of interstitial pressure and fluid velocity after cell killing. Let
us now consider the changes of the interstitial pressure and of the extracellular
fluid velocity following the delivery of a cell-killing agent. We will assume the
stationary state described in section 4 as the initial condition. We restrict ourselves
to considering a single-dose treatment, and we choose for µP (r, t) and µQ(r, t) the
following space-independent expressions:

µP (r, t) =
mP

τ1 − τ2

(e−t/τ1 − e−t/τ2) ,

µQ(r, t) =
mQ

τ1 − τ2

(e−t/τ1 − e−t/τ2) ,

where mP , mQ, τ1 and τ2 are parameters suitably chosen to mimic the effect of a
drug delivered as a single bolus. As in the steady-state problem, the time evolution
of νP , νQ, u, σ, ρN , and V c

N (Problem A) is independent of the time evolution of
p, v, and B (Problem B).

The numerical solution of Problem A is based on a procedure that suitably
extends that described in [6]. The basic feature of this procedure is the computation
of the viable cell fractions along a prefixed set of characteristic lines of equations
(27)–(28). The numerical computation of p, v, and B was performed in parallel,
guaranteeing that the constraints (21) and (26) are satisfied.

Figure 5 reports an example of the time evolution of the cord for different values
of ζout. The radius ρN shows an initial shrinkage, followed by a regrowth that
will eventually lead the cord to the stationary state (panel A). The interface ρN

quickly becomes a material boundary and so remains until, after t=4, it becomes
nonmaterial again. This event is marked by a slope discontinuity. In the same
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Other parameters are as in Figure 2, with λmax =1 and σP =0.375.

panel, the time course of the boundary B is plotted. Boundary B has a slighter
regression, as compared with that of ρN , because the necrotic region tends to be
filled by liquid. As expected, this regression is smaller for smaller values of ζout.
Panel B reports the ratio between the total volume (per unit cord length) of viable
cells and its value at t = 0, showing the dynamics of the viable-cell population
following the treatment (the drug bolus reduces the viable cells to around 1/20 of
the initial value), together with the cellular fraction in the necrotic region. This
fraction decays until the interface ρN is material, because the cellular volume V c

N ,
according to equation (31), is no longer fed by the dead cells. When the interface
ρN returns to nonmaterial, V c

N is fed again. Panel C shows that the pressure p0

(upper curves) diminishes after the treatment, basically because of the decrease of
B (and then of pN ). The decrease of p0 causes an increase of the fluid velocity out
of the vessel wall, v(1), and this increment contributes to the observed increment
in v(ρN ) (lower curves). This fact suggests that after a first dose of drug, there is a
time interval in which the convective extravasation of the drug is facilitated. The
increase in v(1) related to the decrease of p0, together with the net production of
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liquid due to the disgregation of dead cells within the cord, may explain the very
moderate regression of the necrotic region.
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Figure 6. Time course of the cellular fraction in N for different
values of µN . Other parameters are as in Figure 5, with ζout =2.

In the cases of Figure 5B, the necrotic region rapidly becomes almost completely
composed by liquid. This phenomenon is however modulated by the degradation
rate of necrotic cells, and as may be seen in Figure 6, the cellular fraction can be
enhanced as µN is lowered. For the smallest value of µN (µN =0.25), the constraint
(21) is active with the equality sign until t=0.68. After this time, B and pN switch
to the regime defined by equations (20) and (22), and the cellular fraction in N goes
below ν?. As the cord regrows to the steady state, at t = 5.93 (not shown in the
figure), the system switches again to the regime characterized by a cellular fraction
equal to ν?.

6. Concluding remarks. The model illustrated here describes, in the ideal ge-
ometry of a regular array of parallel tumor cords, the interstitial pressure and the
extracellular fluid motion in terms of longitudinal averages of the pressure and of
the radial component of the fluid velocity, respectively. The model recovers the ex-
perimentally observed high value of the interstitial pressure, postulating a relatively
low value of the parameters ζout and ζN

out, which summarize the high hydraulic resis-
tance that fluid encounters when flowing into lymphatic vessels. Our investigation
focusses on the case in which necrosis is present in the tumor mass. The model
assigns a role to the necrotic region in determining the interstitial pressure in the
viable region, as it may sense the forces produced by the displacement of the sur-
rounding tissue during tumor growth. In the presence of high interstitial pressure,
a limited convective current is predicted, indicating a possibly reduced transport of
anticancer agents with high molecular weight. After a single-dose cell-killing treat-
ment, the model predicts a very limited regression of the necrotic region, due to a
substantial filling of this region by liquids. This finding suggests that the overall
regression of the tumor mass after treatments may be explained only by taking into
account variations in time of the parameters that characterize the balance of fluid.
In particular, phenomena such as the impairment of the vascular network and the
enhancement of the hydraulic conductivities, due to cell death and degradation of
dead cells, should be accounted for.
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[11] A. Friedman, A hierarchy of cancer models and their mathematical challenges,
Discrete Contin. Dynam. Systems B 4 (2004) 147–159.

[12] D. G. Hirst and J. Denekamp, Tumour cell proliferation in relation to the vascula-
ture, Cell Tissue Kinet. 12 (1979) 31–42.

[13] R. K. Jain, Delivery of molecular medicine to solid tumors: Lessons from in vivo
imaging of gene expression and function, J. Controlled Release 74 (2001) 7–25.

[14] A. Krogh, The number and distribution of capillaries in muscles with calculations
of the oxygen pressure head necessary for supplying the tissue, J. Physiol. 52 (1919)
409–415.

[15] G. Majno and I. Joris, Apoptosis, oncosis and necrosis: An overview of cell death,
Am. J. Pathol. 146 (1995) 3–15.

[16] J. V. Moore, P. S. Hasleton, and C. H. Buckley, Tumour cords in 52 human bronchial
and cervical squamous cell carcinomas: Inferences for their cellular kinetics and
radiobiology, Br. J. Cancer 51 (1985) 407–413.

[17] P. A. Netti and R. K. Jain, Interstitial transport in solid tumours, in Cancer Mod-
elling and Simulation, ed. L. Preziosi, Chapman and Hall/CRC, Boca Raton, FL, 2003,
51–74.

[18] J. A. Royds, S. K. Dower, E. E. Qwarnstrom, and C. E. Lewis, Response of tumour cells
to hypoxia: Role of p53 and NFkB, J. Clin. Pathol. Mol. Pathol. 51 (1998), 55–61.

[19] I. F. Tannock, The relation between cell proliferation and the vascular system in
a transplanted mouse mammary tumour, Br. J. Cancer 22 (1968) 258–273.

[20] W. L. Walker and J. Cook, Drug delivery to brain tumors, Bull. Math. Biol. 58 (1996)
1047–1074.

Received on January 1, 2005. Revised on June 8, 2005.

E-mail address: bertuzzi@iasi.cnr.it

E-mail address: fasano@math.unifi.it

E-mail address: gandolfi@iasi.cnr.it

E-mail address: sinisgalli@iasi.cnr.it


