The Poisson quasi-Lindley and the Poisson-new XLindley distributions are revisited, emphasizing on alternative derivation techniques. These distributions can be derived as Poisson mixtures when (i) the probability density function of the mixing distribution is known, (ii) the moment generating function of the mixing distribution is known, or (iii) the regression function of the mixing continuous random variable on the mixed discrete random variable is of a known form. Furthermore, they can be derived by the addition of independent random variables. An indication that the Poisson-new XLindley distribution is a member of the class of Poisson quasi- Lindley models is also given. An Extended Poisson quasi-Lindley (EPQL) distribution is constructed following the above derivation procedures and, as a generalized binomial distribution, it is extensively studied, highlighting its role as a marginal distribution in bivariate settings. Two general and structurally different bivariate Poisson quasi-Lindley and Poisson-new XLindley distributions are then introduced utilizing various techniques, including mixing, generalization, addition of independent bivariate random variables, regression functions, and conditional distributions. These bivariate models exhibit positive correlation and over-dispersed marginals. Several of their characteristics are derived, including probability generating functions, probabilities and their recurrences, moments, conditional distributions, and regression functions. The special feature of these general models is that several of their members, including bivariate Poisson-new XLindley distributions, are fitted satisfactorily to different sets of automobile insurance data previously used in the literature. In particular, members of the first bivariate framework are applied to three sets of data involving the number of claims and claim amounts, while members of the second framework are fitted to data concerning material damage and bodily injury from portfolios of liability insurance policies. Finally, suggestions for future research are also provided.
Citation: Maria Vardaki, Haralambos Papageorgiou. Poisson quasi-Lindley and Poisson-new XLindley univariate and bivariate models: derivation techniques and automobile insurance applications[J]. AIMS Mathematics, 2026, 11(2): 3772-3810. doi: 10.3934/math.2026154
The Poisson quasi-Lindley and the Poisson-new XLindley distributions are revisited, emphasizing on alternative derivation techniques. These distributions can be derived as Poisson mixtures when (i) the probability density function of the mixing distribution is known, (ii) the moment generating function of the mixing distribution is known, or (iii) the regression function of the mixing continuous random variable on the mixed discrete random variable is of a known form. Furthermore, they can be derived by the addition of independent random variables. An indication that the Poisson-new XLindley distribution is a member of the class of Poisson quasi- Lindley models is also given. An Extended Poisson quasi-Lindley (EPQL) distribution is constructed following the above derivation procedures and, as a generalized binomial distribution, it is extensively studied, highlighting its role as a marginal distribution in bivariate settings. Two general and structurally different bivariate Poisson quasi-Lindley and Poisson-new XLindley distributions are then introduced utilizing various techniques, including mixing, generalization, addition of independent bivariate random variables, regression functions, and conditional distributions. These bivariate models exhibit positive correlation and over-dispersed marginals. Several of their characteristics are derived, including probability generating functions, probabilities and their recurrences, moments, conditional distributions, and regression functions. The special feature of these general models is that several of their members, including bivariate Poisson-new XLindley distributions, are fitted satisfactorily to different sets of automobile insurance data previously used in the literature. In particular, members of the first bivariate framework are applied to three sets of data involving the number of claims and claim amounts, while members of the second framework are fitted to data concerning material damage and bodily injury from portfolios of liability insurance policies. Finally, suggestions for future research are also provided.
| [1] | D. Karlis, E. Xekalaki, Mixed Poisson distributions, Int. Stat. Rev., 73 (2005), 35–58. https://doi.org/10.1111/j.1751-5823.2005.tb00250.x |
| [2] |
Y. Atikankul, A new Poisson generalized Lindley regression model, Aust. J. Stat., 52 (2023), 39–50. https://doi.org/10.17713/ajs.v52i1.1344 doi: 10.17713/ajs.v52i1.1344
|
| [3] |
D. Bhati, D. V. S. Sastry, P. Z. M. Quadri, A new generalized Poisson-Lindley distribution: applications and properties, Aust. J. Stat., 44 (2015), 35–51. https://doi.org/10.17713/ajs.v44i4.54 doi: 10.17713/ajs.v44i4.54
|
| [4] | C. Chesneau, L. Tomy, G. Veena, The Poisson-modified Lindley distribution, Appl. Math. E-Notes, 22 (2002), 18–31. |
| [5] | C. Chesneau, V. D'cruz, R. Maya, M. R. Irshad, A novel discrete distribution based on the mixture of Poisson and sum of two Lindley RVs, REVSTAT-Stat. J., 23 (2025), 371–396. |
| [6] |
E. Mahmoudi, H. Zakerzadeh, Generalized Poisson-Lindley distribution, Commun. Stat. Theory Methods, 39 (2010), 1785–1798. https://doi.org/10.1080/03610920902898514 doi: 10.1080/03610920902898514
|
| [7] | R. Shanker, A. Mishra, A two-parameter Poisson-Lindley distribution, Int. J. Stat. Syst., 9 (2014), 79–85. |
| [8] |
E. Gómez-Dèniz, J. M. Sarabia, N. Balakrishnan, A multivariate discrete Poisson-Lindley distribution: extensions and actuarial applications, Astin Bull., 42 (2012), 655–678. https://doi.org/10.2143/AST.42.2.2182812 doi: 10.2143/AST.42.2.2182812
|
| [9] |
H. Zamani, P. Faroughi, N. Ismail, Bivariate Poisson-Lindley distribution with application, J. Math. Stat., 11 (2015), 1–6. https://doi.org/10.3844/jmssp.2015.1.6 doi: 10.3844/jmssp.2015.1.6
|
| [10] |
I. M. Rasheed, V. D'cruz, M. Radhakumari, S. A. Devi, N. M. Khan, Bivariate Poisson generalized Lindley distributions and the associated BINAR (1) process, Aust. J. Stat., 53 (2024), 1–28. https://doi.org/10.17713/ajs.v53i1.1551 doi: 10.17713/ajs.v53i1.1551
|
| [11] |
H. Papageorgiou, M. Vardaki, Bivariate discrete Poisson-Lindley distributions, J. Stat. Theory Pract., 16 (2022), 30. https://doi.org/10.1007/s42519-022-00261-z doi: 10.1007/s42519-022-00261-z
|
| [12] |
M. Vardaki, H. Papageorgiou, On multivariate discrete Poisson-Lindley distributions, J. Stat. Theory Pract., 18 (2024), 33. https://doi.org/10.1007/s42519-024-00389-0 doi: 10.1007/s42519-024-00389-0
|
| [13] | M. Vardaki, H. Papageorgiou, On a Poisson generalized Lindley distribution: related models, bivariate extensions and insurance application, REVSTAT-Stat. J., 2025. In press. |
| [14] | R. Shanker, A. Mishra, A quasi Poisson-Lindley distribution, J. Indian Stat. Assoc., 54 (2016), 113–125. |
| [15] |
R. Grine, H. Zeghdoudi, On Poisson quasi-Lindley distribution and its applications, J. Mod. Appl. Stat. Methods, 16 (2017), 403–417. https://doi.org/10.22237/jmasm/1509495660 doi: 10.22237/jmasm/1509495660
|
| [16] |
E. Altun, A new model for over-dispersed count data: Poisson quasi-Lindley regression model, Math. Sci., 13 (2019), 241–247. https://doi.org/10.1007/s40096-019-0293-5 doi: 10.1007/s40096-019-0293-5
|
| [17] |
M. Borah, J. Hazarika, A new quasi Poisson-Lindley distribution, J. Stat. Theory Appl., 16 (2017), 576–588. https://doi.org/10.2991/jsta.2017.16.4.11 doi: 10.2991/jsta.2017.16.4.11
|
| [18] |
R. Tharshan, P. Wijekoon, Zero-modified Poisson-modification of quasi Lindley distribution and its applications, Stat. Transition New Ser., 23 (2022), 113-128. https://doi.org/10.2478/stattrans-2022-0045 doi: 10.2478/stattrans-2022-0045
|
| [19] |
R. Shanker, K. K. Shukla, R. Shanker, A note on size-biased new quasi Poisson-Lindley distribution, Biom. Biostat. Int. J., 9 (2020), 97–104. https://doi.org/10.15406/bbij.2020.09.00306 doi: 10.15406/bbij.2020.09.00306
|
| [20] |
F. Z. Seghier, M. Ahsan-ul-Haq, H. Zeghdoudi, S. Hashmi, A new generalization of Poisson distribution for over-dispersed count data: mathematical properties, regression model and applications, Lobachevkii J. Math., 44 (2023), 3850–3859. https://doi.org/10.1134/S1995080223090378 doi: 10.1134/S1995080223090378
|
| [21] |
M. R. Irshad, S. Aswathy, R. Maya, S. Nadarajah, New one-parameter over-dispersed discrete distribution and its application to the nonnegative integer-valued autoregressive model of order one, Mathematics, 12 (2024), 81. https://doi.org/10.3390/math12010081 doi: 10.3390/math12010081
|
| [22] |
C. Benatmane, H. Zeghdoudi, R. Pakyari, Modified Poisson process: properties and application in ruin model, Lobachevkii J. Math., 45 (2024), 4050–4059. https://doi.org/10.1134/s1995080224604806 doi: 10.1134/s1995080224604806
|
| [23] |
M. R. Irshad, M. Ahammed, R. Maya, S. Nadarajah, Poisson new XLindley INAR(1) process, Ricerche Mat., 74 (2025), 2973–2993. https://doi.org/10.1007/s11587-025-00928-2 doi: 10.1007/s11587-025-00928-2
|
| [24] | Z. Neche, C. Benatmane, A. Djebar, H. Zeghdoudi, Around Poisson new XLindley process: comparison and application in actuarial science, J. Comput. Anal. Appl., 34 (2025), 150–160. |
| [25] |
A. Huddari, H. Zeghdoudi, R. Vinoth, Modified bivariate Poisson-Lindley model: properties and applications in Soccer, Int. J. Comput. Sci. Sport, 23 (2024), 22–34. https://doi.org/10.2478/ijcss-2023-0009 doi: 10.2478/ijcss-2023-0009
|
| [26] |
E. Gómez-Dèniz, Bivariate credibility bonus-malus premiums distinguishing between two types of claims, Insur.: Math. Econ., 70 (2016), 117–124. https://doi.org/10.1016/j.insmatheco.2016.06.009 doi: 10.1016/j.insmatheco.2016.06.009
|
| [27] |
E. Gómez-Dèniz, E. Calderin-Ojeda, A survey of the individual claim size and other risk factors using bonus-malus premiums, Risks, 8 (2020), 20. https://doi.org/10.3390/risks8010020 doi: 10.3390/risks8010020
|
| [28] |
A. Moumeersi, T. Pongsart, Bonus-malus premiums based on claim frequency and the size of claims, Risks, 10 (2022), 181. https://doi.org/10.3390/risks10090181 doi: 10.3390/risks10090181
|
| [29] |
C. Partrat, Compound model for two dependent kinds of claim, Insur.: Math. Econ., 15 (1994), 219–231. https://doi.org/10.1016/0167-6687(94)90796-X doi: 10.1016/0167-6687(94)90796-X
|
| [30] |
R. Vernic, On the bivariate generalized Poisson distribution, Astin Bull., 27 (1997), 23–32. https://doi.org/10.2143/AST.27.1.542065 doi: 10.2143/AST.27.1.542065
|
| [31] | M. K. Diafouka, C. G. Louzayadio, R. O. Malouata, N. R. Ngabassaka, R. Bidounga, On a bivariate Katz's distribution, Adv. Math.: Sci. J., 11 (2022), 955–968. |
| [32] | S. Kocherlakota, K. Kocherlakota, Bivariate discrete distributions, CRC Press, 1992. https://doi.org/10.1201/9781315138480 |
| [33] |
T. Cacoullos, H. Papageorgiou, Characterizing the negative binomial distribution, J. Appl. Probab., 19 (1982), 742–743. https://doi.org/10.2307/3213540 doi: 10.2307/3213540
|
| [34] | R. Shanker, A. Mishra, A quasi Lindley distribution, Afr. J. Math. Comput. Sci. Res., 6 (2013), 64–71. |
| [35] |
H. Papageorgiou, J. Wesolowksi, Posterior mean identifies the prior distribution in NB and related models, Stat. Probabil. Lett., 36 (1997), 127–134. https://doi.org/10.1016/S0167-7152(97)00055-2 doi: 10.1016/S0167-7152(97)00055-2
|
| [36] | N. L. Johnson, A. W. Kemp, S. Kotz, Univariate discrete distributions, New York: John Wiley and Sons, 2005. https://doi.org/10.1002/0471715816 |
| [37] | A. Beghriche, H. Zeghdoudi, V. Raman, S. Chouia, New polynomial exponential distribution: properties and applications, Stat. Transition New Ser. 23 (2022), 95–112. https://doi.org/10.2478/stattrans-2022-0032 |
| [38] |
N. Khodja, A. M. Gemeay, H. Zeghdoudi, K. Karakaya, A. M. Alshangiti, M. E. Bakr, et al., Modeling voltage real data set by a new version of Lindley distribution, IEEE Access, 11 (2023), 67220–67229. https://doi.org/10.1109/ACCESS.2023.3287926 doi: 10.1109/ACCESS.2023.3287926
|
| [39] |
A. Beghriche, Y. A. Tashkandy, M. E. Bakr, H. Zeghdoudi, A. M. Gemeay, M. M. Hossain, et al., The inverse XLindley distribution: properties and application, IEEE Access, 11 (2023), 47272–47281. https://doi.org/10.1109/ACCESS.2023.3271604 doi: 10.1109/ACCESS.2023.3271604
|
| [40] |
C. Chesneau, H. S. Bakouch, Y. Akdogan, K. Karakaya, The binomial-discrete Poisson-Lindley model: modeling and applications to count regression, Commun. Math. Res., 38 (2022), 28–51. https://doi.org/10.4208/cmr.2021-0045 doi: 10.4208/cmr.2021-0045
|
| [41] |
T. Cacoullos, H. Papageorgiou, On some bivariate probability models applicable to traffic accidents and fatalities, Int. Stat. Rev., 48 (1980), 345–356. https://doi.org/10.2307/1402946 doi: 10.2307/1402946
|
| [42] |
R. E. Leiter, M. A. Hamdan, Some bivariate probability models applicable to traffic accidents and fatalities, Int. Stat. Rev., 41 (1973), 87–100. https://doi.org/10.2307/1402790 doi: 10.2307/1402790
|
| [43] | T. Cacoullos, H. Papageorgiou, On bivariate discrete distributions generalized by compounding, In: C. Taillie, G. P. Patil, B. A. Baldessari, Statistical distributions in scientific work, Reidel, Dordrecht, 1981,197–212. https://doi.org/10.1007/978-94-009-8549-0_16 |
| [44] |
T. Cacoullos, H. Papageorgiou, Characterizations of discrete distributions by a conditional distribution and a regression function, Ann. Inst. Stat. Math., 35 (1983), 95–103. https://doi.org/10.1007/BF02480967 doi: 10.1007/BF02480967
|
| [45] | H. Papageorgiou, V. E. Piperigou, On bivariate "Short" and related distributions, In: N. L. Johnson, N. Balakrishnan, Advances in the theory and practice of statistics: a volume in Honor of Samuel Kotz, New York: John Wiley and Sons, 1997,397–413. |
| [46] | N. L. Johnson, S. Kotz, N. Balakrishnan, Discrete multivariate distributions, New York: John Wiley and Sons, 1997. |
| [47] | T. Cacoullos, H. Papageorgiou, Bivariate negative binomial-Poisson and negative binomial-Bernoulli models with an application to accident data, In: G. Kallianpur, P. R. Krishnaiah, J. K. Ghosh, Statistics and probability: essays in honor of C. R. Rao, North-Holland Publishing Company, 1982,155–168. |
| [48] | K. Subrahmaniam, A test of "Intrinsic correlation" in the theory of accident proneness, J. Royal. Stat. Soc. Ser. B, 28 (1966). https://doi.org/10.1111/j.2517-6161.1966.tb00671.x |
| [49] |
B. R. Rao, S. Mazumdar, J. H. Waller, C. C. Li, Correlation between the numbers of two types of children in a family, Biometrics, 29 (1973), 271–279. https://doi.org/10.2307/2529391 doi: 10.2307/2529391
|
| [50] | P. DeJong, G. Heller, Generalized linear models for insurance data, Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511755408 |
| [51] |
H. Papageorgiou, S. Loukas, On estimating the parameters of a bivariate probability model applicable to traffic accidents, Biometrics, 44 (1988), 495–504. https://doi.org/10.2307/2531862 doi: 10.2307/2531862
|
| [52] |
S. Loukas, H. Papageorgiou, Estimation for the bivariate negative binomial distribution, J. Stat. Comput. Simul., 22 (1985), 67–82. https://doi.org/10.1080/00949658508810833 doi: 10.1080/00949658508810833
|
| [53] |
A. A. Al-Babtain, A. M. Gemeay, A. Z. Afify, Estimation methods for the discrete Poisson–Lindley and discrete Lindley distributions with actuarial measures and applications in medicine, J. King Saud Univ.–Sci., 33 (2021), 101224. https://doi.org/10.1016/j.jksus.2020.10.021 doi: 10.1016/j.jksus.2020.10.021
|