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Abstract: The Poisson quasi-Lindley and the Poisson-new XLindley distributions are revisited,
emphasizing on alternative derivation techniques. These distributions can be derived as Poisson
mixtures when (i) the probability density function of the mixing distribution is known, (ii) the moment
generating function of the mixing distribution is known, or (iii) the regression function of the mixing
continuous random variable on the mixed discrete random variable is of a known form. Furthermore,
they can be derived by the addition of independent random variables. An indication that the Poisson-
new XLindley distribution is a member of the class of Poisson quasi- Lindley models is also given.
An Extended Poisson quasi-Lindley (EPQL) distribution is constructed following the above derivation
procedures and, as a generalized binomial distribution, it is extensively studied, highlighting its role
as a marginal distribution in bivariate settings. Two general and structurally different bivariate Poisson
quasi-Lindley and Poisson-new XLindley distributions are then introduced utilizing various techniques,
including mixing, generalization, addition of independent bivariate random variables, regression
functions, and conditional distributions. These bivariate models exhibit positive correlation and over-
dispersed marginals. Several of their characteristics are derived, including probability generating
functions, probabilities and their recurrences, moments, conditional distributions, and regression
functions. The special feature of these general models is that several of their members, including
bivariate Poisson-new XLindley distributions, are fitted satisfactorily to different sets of automobile
insurance data previously used in the literature. In particular, members of the first bivariate framework
are applied to three sets of data involving the number of claims and claim amounts, while members of
the second framework are fitted to data concerning material damage and bodily injury from portfolios
of liability insurance policies. Finally, suggestions for future research are also provided.
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1. Introduction

Availability of count data, not only for one variable of interest but also for two (or more) dependent
variables, is rapidly increasing in a variety of human activity sectors including medicine, ecology,
genetics, economy, actuarial studies, and sports. One of the main problems faced by researchers in
modeling count data is over-dispersion. Therefore, for modeling them, we should employ univariate
distributions with the property of over-dispersion or bivariate (multivariate) models with over-dispersed
marginals.

Since univariate distributions derived as Poisson mixtures possess this property, as pointed out
by [1], there is an ongoing activity in recent years for introducing new univariate and subsequently
bivariate (multivariate) Poisson-Lindley type models. In the univariate case various Poisson-Lindley
type models were derived. We refer among others, to [2–7]. Bivariate (multivariate) Poisson-Lindley
distributions were introduced by [8–13].

A Poisson-Lindley-type model that has attracted the attention of several authors is the Poisson
quasi-Lindley distribution introduced by [14, 15]. Additional properties, extensions, and applications
were studied among others by [16–19].

Recently, a simple one-parameter discrete model, the Poisson-new XLindley distribution, was
introduced by [20, 21]. Further properties of this distribution were examined by [22–24], and
applications were suggested in the areas of ecology, medicine, veterinary medicine, and actuarial
science. A bivariate version of this model was introduced and studied by [25] with applications in
soccer.

Poisson-Lindley-type models are usually derived as Poisson mixtures when the probability density
function (PDF) of the mixing distribution is known. In this paper, the Poisson quasi-Lindley and the
Poisson-new XLindley distributions are revisited, and alternative derivation procedures are suggested.
We prove that these distributions can be obtained as Poisson mixtures when any one of: (i) the PDF, (ii)
the moment generating function (MGF) or (iii) the conditional expectation of the continuous mixing
random variable (RV) on the discrete mixed RV is known. Finally, they can also be derived by the
addition of a geometric distribution with an independent inflated (or zero-modified or with added zeros)
geometric distribution with the same parameter. Furthermore, we demonstrate that the one parameter
Poisson-new XLindley distribution, as well as other models, can be regarded as members of the more
general class of Poisson quasi-Lindley distributions.

We proceed by introducing and extensively studying an EPQL distribution. This distribution can
be derived not only by the procedures suggested for the Poisson quasi-Lindley model but also by
generalizing a binomial distribution when its exponent follows a Poisson quasi-Lindley model. This
technique can be readily applied for introducing multivariate Poisson quasi-Lindley and multivariate
Poisson-new XLindley distributions, see [12]. An additional reason for introducing this distribution is
that it appears as marginal distribution in bivariate models.

However, the main contribution of this paper is the introduction of two general, structurally different
Poisson quasi-Lindley distributions (X1, X2) with Poisson-new XLindley distributions as examples.
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Each model has positive correlation and over-dispersed marginals and can be obtained by various
techniques. The first one is derived by mixing a bivariate Poisson (Poisson-Bernoulli) model with
a univariate Poisson quasi-Lindley distribution with known MGF. An alternative derivation is by
assuming that the conditional distribution of the RV X2, given the RV X1, is binomial and requiring any
one of the following three characteristics to be known: the probability function (PF) of the marginal RV
X1, the probability generating function (PGF) of the RV X1, or the conditional expectation of the RV X1

on the RV X2. Finally, this bivariate Poisson quasi-Lindley distribution can be obtained by the addition
of a bivariate geometric-Bernoulli distribution with an independent bivariate geometric-Bernoulli with
added zeros in the (0, 0) cell and the same parameters. The other bivariate model is preferably derived
by generalizing a bivariate binomial distribution when its exponent follows a univariate Poisson quasi-
Lindley distribution. Other methods involve mixing a well-known version of a bivariate Poisson
distribution or adding a bivariate geometric distribution with an independent bivariate geometric
distribution with added zeros in the (0, 0) cell and the same parameters. Various properties of these
distributions are obtained, including the PGF’s recurrences for probabilities, moments, conditional
distributions, and regression functions.

The special feature of these general models is that several of their members, including bivariate
Poisson-new XLindley distributions, are fitted satisfactorily to various sets of data. A variety of
examples related to two types of problems faced by automobile insurance companies are given. For
demonstration purposes, we apply bivariate Poisson-new XLindley and three other members of each
bivariate model to different data sets of automobile insurance portfolios. The first type of data refers to
the number of claims and the claim size utilized in calculating bonus-malus premiums and we consider
three different examples previously used by [13, 26–28]. The second type of data refers to material
damage and bodily injury claims from a portfolio of liability policies, introduced in the literature
by [29] and subsequently used by [8, 12, 13, 30, 31] to demonstrate the applicability of their bivariate
models.

The rest of the paper is structured as follows. In Section 2, we briefly discuss the Poisson quasi-
Lindley and the Poisson-new XLindley distributions focusing on procedures leading to their derivation.
We also indicate interrelations between them. In Section 3, we introduce and extensively study an
EPQL model. In Sections 4 and 5, bivariate general Poisson quasi-Lindley distributions are introduced
and studied, emphasizing on derivation techniques. Sections 6 and 7 deal with applications of a variety
of members of both bivariate models previously introduced, in various sets of real data from automobile
insurance companies. Finally, Section 8 concludes.

2. The Poisson quasi-Lindley and the Poisson-new XLindley distributions

In this section various derivation techniques are suggested for the Poisson quasi-Lindley and
Poisson-new XLindley models. Furthermore, interrelations between them are indicated, and relative
properties are given.

2.1. The Poisson quasi-Lindley model

This distribution was introduced by [14] under the name quasi Poisson-Lindley and [15] as a Poisson
mixture.
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2.1.1. Definition and genesis

Definition 2.1. An RV X is said to have a Poisson quasi-Lindley distribution with parameters α > 0,
θ > 0 if its PF is

P(X = x;α, θ) =
θ

α + 1
α(θ + 1) + θ(x + 1)

(θ + 1)x+2 , x = 0, 1, . . . , (2.1)

or if its PGF is

GX(s) =
θ

α + 1
α(θ − s + 1) + θ

(θ − s + 1)2 . (2.2)

2.1.2. Derivation as a Poisson (λ) mixture

Consider a Poisson distribution with parameter λ, and assume that the parameter is not constant but
a continuous RV with PDF f (λ).

Definition 2.2. A non-negative integer-valued RV X follows a mixed Poisson distribution if its PF
P(X = x) is given by

P(X = x) =

∞∫
0

e−λλx

x!
f (λ)dλ, x = 0, 1, . . . , (2.3)

where f (λ) is the PDF of the mixing distribution.
Consequently, the PGF of the RV X is

GX(s) =

∞∫
0

eλ(s−1) f (λ)dλ

= MΛ(s − 1), (2.4)

where MΛ(·) is the MGF of the mixing distribution evaluated at s − 1.

It is customary for Poisson mixtures to utilize the PDF f (λ) of a known mixing distribution
to derive the PF P(X = x) of the mixed distribution from Eq (2.3). However, alternative
approaches can also be employed. Assuming, for example, that the MGF MΛ(·) is known, from
Eq (2.4), we can derive the PGF GX(·). In addition, from the knowledge of the regression function
E[Λ | X = x], the PF P(X = x) can be obtained. These procedures are also of interest since often, they
result in simplifications in the derivation of various characteristics of the mixed distribution, are more
easily extended to higher dimensions (see for example [32]), and are useful in certain applications as
suggested by [33].

i) Derivation when the PDF f (λ) of the mixing distribution is known.
As assumed by [14, 15], when the mixing RV Λ follows a quasi-Lindley distribution with PDF

f (λ;α, θ) =
θ(α + θλ)
α + 1

e−θλ λ > 0, θ > 0, α > 0 (2.5)
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introduced by [34] then, from Eq (2.3), they derived the PF of the Poisson quasi-Lindley distribution
given by Eq (2.1).

ii) Derivation when the MGF MΛ(·) of the mixing distribution is known.
Since the MGF of the quasi-Poisson distribution is

MΛ(s) =
θ

α + 1
α(θ − s) + θ

(θ − s)2 , (2.6)

from Eq (2.4), the PGF of the Poisson quasi-Lindley distribution given by Eq (2.2) is immediately
derived.

iii) Derivation when the regression function m(x) = E[Λ | X = x] is known.
This technique is closely related to a characterization theorem proved by [11]. For relevant papers,

see [33, 35].

Proposition 2.1. Consider a Poisson mixture defined by Eq (2.3).
Also, let

m(x) =
x + 1
θ + 1

α(θ + 1) + θ(x + 2)
α(θ + 1) + θ(x + 1)

.

Then P(X = x) is given by Eq (2.1).

Proof. Since

m(x) =

∞∫
0

λp(λ | x)dλ,

we obtain

E[Λ | X = x] = (x + 1)
P(X = x + 1)

P(X = x)
,

or

P(X = x) = P(X = 0)
x−1∏
k=0

m(k)
k + 1

= P(X = 0)
1

(θ + 1)x

α(θ + 1) + θ(x + 1)
α(θ + 1) + θ

=
θ

α + 1
α(θ + 1) + θ(x + 1)

(θ + 1)x+2 , x = 0, 1, 2, . . . .

This expression corresponds to Eq (2.1) since

P(X = 0) =
θ

α + 1
α(θ + 1) + θ

(θ + 1)2 (2.7)

is determined from the initial condition
∑
x

P(X = x) = 1.
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2.1.3. Derivation by the addition of independent RVs

In this subsection, we prove that the Poisson quasi-Lindley model can be derived not only as a
Poisson mixture but also by the addition of a geometric and an independent inflated (or zero-modified
or with added zeros) geometric distribution with the same parameter.

Proposition 2.2. Consider two independent RVs Z1 and Z2. Let Z1 be a geometric distribution with

parameter
θ

θ + 1
and PGF

GZ1(s) =
θ

θ − s + 1
. (2.8)

Also, assume that the RV Z2 is distributed as an inflated geometric with inflation parameter ω and PGF
given by [36]

GZ2(s) = ω + (1 − ω)GZ1(s). (2.9)

Then, if
ω =

α

α + 1
, (2.10)

i)
GZ2(s) =

α(θ − s + 1) + θ
(α + 1)(θ − s + 1)

, (2.11)

and
ii) the RV Z1 + Z2 follows a Poisson quasi-Lindley distribution with PGF given by Eq (2.2).

Proof. From Eqs (2.8)–(2.10),

GZ2(s) =
α

α + 1
+

(
1 −

α

α + 1

)
θ

(θ − s + 1)

=
α(θ − s + 1) + θ

(α + 1)(θ − s + 1)
.

In addition, from Eqs (2.8) and (2.11),

GZ1+Z2(s) = GZ1(s)GZ2(s)

=
θ

θ − s + 1
α(θ − s + 1) + θ

(α + 1)(θ − s + 1)

=
θ

α + 1
α(θ − s + 1) + θ

(θ − s + 1)2 ,

which is the required PGF (2.2).

2.1.4. Properties

Considering the PGF given by Eq (2.2), we can easily obtain

∂xG(s)
∂sx = x!

θ

α + 1
α(θ − s + 1) + θ(x + 1)

(θ − s + 1)x+2 . (2.12)
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From Eq (2.12), expressions for probabilities and factorial moments can be derived. In particular,

P(X = x;α, θ) =
θ

α + 1
α(θ + 1) + θ(x + 1)

(θ + 1)x+2 , α, θ > 0, x = 0, 1, . . .

and

µ[τ]:X =
τ!
α + 1

α + τ + 1
θτ

, τ = 1, 2, . . . , (2.13)

where
µ[τ]:X = E(X(τ)) and X(τ) = X(X − 1) . . . (X − τ + 1).

From Eq (2.13),

E(X) =
α + 2

(α + 1)θ
.

The probabilities can be calculated recursively from the relation

P(X = x + 1) =
1
θ + 1

α(θ + 1) + θ(x + 2)
α(θ + 1) + θ(x + 1)

P(X = x), x = 0, 1, . . .

with P(X = 0) given by Eq (2.7).

2.2. The Poisson-new XLindley model

This one-parameter distribution was introduced by [20, 21] as a Poisson mixture.

2.2.1. Definition and genesis

An RV X is said to have a Poisson-new XLindley distribution with parameter θ > 0 if its PF is

P(X = x; θ) =
θ

2
1 + θ(x + 2)
(θ + 1)x+2 , x = 0, 1, . . . (2.14)

or if its PGF is

GX(s) =
θ

2
2θ − s + 1

(θ − s + 1)2 . (2.15)

2.2.2. Derivation as a Poisson mixture

i) Derivation when the PDF f (λ) of the mixing distribution is known.
This technique was used by [20, 21]. In particular, they assumed that the mixing RV Λ follows

the new XLindley distribution, which is a special case of the one-parameter polynomial exponential
distribution proposed by [37]. The new XLindley distribution has PDF

f (λ; θ) =
θ(1 + θλ)

2
e−θλ, λ > 0, θ > 0.

This distribution was introduced and extensively studied by [38]. Several alternative simple models
related to the Lindley distribution were discussed by [39]. From the above equation and Eq (2.3), we
obtain the PF of the Poisson-new XLindley distribution given by Eq (2.14).
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ii) Derivation when the MGF of the mixing distribution is known.
The MGF of the new XLindley distribution is

MΛ(s) =
θ

2
2θ − s

(θ − s)2 . (2.16)

From Eq (2.4), the PGF of the Poisson-new-XLindley distribution given by Eq (2.15) is immediately
obtained.

iii) Derivation when the regression function m(x) = E[Λ | X = x] is known.

Proposition 2.3. Consider a Poisson mixture defined by Eq (2.3). Also, let

m(x) =
x + 1
θ + 1

1 + θ(x + 3)
1 + θ(x + 2)

.

Then P(X = x) is given by Eq (2.14).

Proof. Similar to the one for Proposition 2.1.

2.2.3. Derivation by the addition of independent RVs

Proposition 2.4. Consider two independent RVs Z1 and Z2. Let Z1 follow a geometric distribution
with PGF given by Eq (2.8). Also, assume that the RV Z2 is distributed as an inflated geometric with

inflation parameter ω =
1
2

and PGF

GZ2(s) =
1
2
+

1
2

GZ1(s)

=
2θ − s + 1

2(θ − s + 1)
.

Then

GZ1+Z2(s) =
θ

2
2θ − s + 1

(θ − s + 1)2 ,

which is the PGF given by (2.15).

Proof. Similar to the one given for Proposition 2.2.

2.2.4. Properties

From the PGF given by Eq (2.15), we can easily obtain

∂xG(s)
∂sx = x!

θ

2
(θ − s + 1) + θ(x + 1)

(θ − s + 1)x+2 . (2.17)

Expressions for probabilities and factorial moments can be derived from (2.17). In particular,

P(X = x; θ) =
θ

2
1 + θ(x + 2)
(θ + 1)x+2 , x = 0, 1, . . . , θ > 0
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and

µ[τ]:X =
τ!
2
τ + 2
θτ
, τ = 1, 2, . . . . (2.18)

From Eq (2.18),

E(X) =
3
2θ
.

The probabilities can be calculated recursively from the relation

P(X = x + 1) =
1
θ + 1

1 + θ(x + 3)
1 + θ(x + 2)

P(X = x), x = 0, 1, . . . ,

with

P(X = 0) =
θ

2
2θ + 1

(θ + 1)2 .

Remark 2.1. The Poisson-new XLindley distribution is a member of the class of Poisson quasi-Lindley
distributions for α = 1.

3. An EPQL distribution

In this section, we introduce and study in detail an EPQL model. This distribution is a member
of three general classes of discrete distributions, inheriting important theoretical properties from each
one of them. In particular, it can be derived (i) by generalizing a binomial distribution with respect
to its exponent, (ii) as a Poisson mixture, and (iii) by addition of independent RVs. Moreover,
it offers more flexibility for interpreting complex real-world data, e.g. for modeling counts with
an exposure/weighting factor (p). Possible application areas are: accident theory (fatal or non-
fatal accidents, also accidents involving material damage or bodily injury), biology (cell dynamics,
genetics), physics (particle production), environmental science (weather patterns), and finance (option
pricing). However, the main motivation for the introduction of the EPQL model is that it appears
as marginal distribution in two structurally different bivariate Poisson quasi-Lindley distributions
introduced and studied in the subsequent sections.

3.1. Derivation and genesis

Definition 3.1. An RV Y is said to have an EPQL distribution with parameters, α > 0, θ > 0, 0 < p < 1,
if its PF is

P(Y = y;α, θ, p) = py θ

α + 1
α(θ + p) + θ(y + 1)

(θ + p)y+2 , y = 0, 1, . . . , (3.1)

or if its PGF is

GY(s) =
θ

α + 1
α(θ − ps + p) + θ

(θ − ps + p)2 . (3.2)
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3.1.1. Derivation as a generalized binomial distribution

In addition to the derivation techniques described for the Poisson quasi-Lindley model, the EPQL
distribution can also be obtained by assuming that the exponent of a binomial distribution is an
RV distributed as a Poisson quasi-Lindley model. This derivation enables us to evaluate several
characteristics of the EPQL distribution utilizing properties of the Poisson quasi-Lindley distribution.
Furthermore, this technique can be used for the derivation of bivariate and multivariate Poisson quasi-
Lindley distributions, see for example [11, 12].

Consider an RV Y with PGF

E(sY | N = n) = (q + ps)n, 0 < p < 1, q = 1 − p,

where N is a non-negative integer-valued RV with PF P(N = n) and PGF

E(sN) = hN(s).

Then the PGF of the RV Y is

GY(s) = hN(q + ps). (3.3)

If N is distributed as a Poisson quasi-Lindley distribution with PGF given by Eq (2.2), then

GY(s) =
θ

α + 1
α(θ − ps + p) + θ

(θ − ps + p)2 ,

which is the PGF of an EPQL model given by Eq (3.2).

3.1.2. Derivation as a Poisson (λp) mixture

Consider a class of mixed Poisson (λp) distributions, where 0 < p < 1 is constant and the parameter
λ is a continuous RV with PDF f (λ), then

P(Y = y) = py

∞∫
0

e−λpλ
y

y!
f (λ)dλ (3.4)

and the MGF

GY(s) = MΛ(p(s − 1)). (3.5)

Utilizing Eqs (3.4) or (3.5), the following techniques can be used:
i) Derivation when the PDF of the mixing distribution is known.
If we assume that the RV Λ follows a quasi-Lindley distribution with PDF given by Eq (2.5), then

from Eq (3.4) we can obtain the PF of the EPQL distribution given by Eq (3.1).
ii) Derivation when the MGF MΛ(·) of the mixing distribution is known.
From Eqs (2.6) and (3.5), the PGF of the EPQL distribution given by Eq (3.2) is immediately

derived.
iii) Derivation when the regression function m(y) = E[Λ | Y = y] is known.
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Proposition 3.1. Consider a Poisson mixture defined by Eq (3.4). Also, let

m(y) =
y + 1
θ + p

α(θ + p) + θ(y + 2)
α(θ + p) + θ(y + 1)

.

Then, P(Y = y) is given by Eq (3.1).

Proof. We have

m(y) =

∞∫
0

λp(λ | y)dλ

=
y + 1

pP(Y = y)

∞∫
0

e−λp (λp)y+1

(y + 1)!
f (λ)dλ

=
y + 1

p
P(Y = y + 1)

P(Y = y)
.

The remaining proof is similar to the one given for Proposition 2.1.

3.1.3. Derivation by the addition of independent RVs

Proposition 3.2. Consider two independent RVs Z3 and Z4. Let Z3 follow a geometric distribution with

parameter
θ

θ + p
and PGF

GZ3(s) =
θ

θ − ps + p
.

Also, assume that the RV Z4 is distributed as an inflated geometric with PGF given by

GZ4(s) =
α

α + 1
+

(
1 −

α

α + 1

)
GZ3(s).

Then

i) GZ4(s) =
α(θ − ps + p) + θ

(α + 1)(θ − ps + p)
,

and
ii) the RV Z3 + Z4 follows an EPQL distribution with PGF given by

GZ3+Z4(s) =
θ

α + 1
α(θ − ps + p) + θ

(θ − ps + p)2 .

Proof. The proof is similar to the one given for Proposition 2.2.

3.2. Properties

From Eq (3.3), we can easily obtain

∂yGY(s)
∂sy = py∂

yhN(q + ps)
∂sy , (3.6)
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and from Eq (3.6),

P(Y = y) =
py

y!
h(y)

N (q) (3.7)

and

µ[τ]:Y = pτµ[τ]:N . (3.8)

If N is distributed as a Poisson quasi-Lindley distribution from Eqs (3.7) and (3.8), a number of
characteristics of the EPQL model can be derived using corresponding properties of the Poisson quasi-
Lindley distribution.

In particular,

P(Y = y; p, α, θ) = py θ

α + 1
α(θ + p) + θ(y + 1)

(θ + p)y+2 , y = 0, 1, . . . .

The probabilities can be calculated recursively from the relation

P(Y = y + 1) =
p
θ + p

α(θ + p) + θ(y + 2)
α(θ + p) + θ(y + 1)

P(Y = y), y = 0, 1, . . . ,

with
P(Y = 0) =

θ

α + 1
α(θ + p) + θ

(θ + p)2 .

In addition,

µ[τ]:Y = pτ
τ!
θτ
α + τ + 1
α + 1

, τ = 1, 2, . . . ,

E(Y) = p
α + 2

(α + 1)θ
,

and

Var(Y) = p
p(α2 + 4α + 2) + θ(α + 1)(α + 2)

(α + 1)2θ2
.

If we define the dispersion index of the RV Y as

DIY =
Var(Y)
E(Y)

,

then

DIY =
p(α2 + 4α + 2)
θ(α + 1)(α + 2)

+ 1.

The EPQL distribution, as the Poisson quasi-Lindley distribution, is unimodal and has the property
of increasing failure or hazard (IFR) rate. This can be easily proved by using an approach suggested
by [36]. Since the expression

P(Y = y + 1)
P(Y = y)

=
p
θ + p

[
1 +

θ

α(θ + p) + θ(y + 1)

]
AIMS Mathematics Volume 11, Issue 2, 3772–3810.
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is clearly a decreasing function of y, this implies unimodality of the corresponding distribution.
Furthermore, because the ratio

P(Y = y + 2)P(Y = y)
[P(Y = y + 1)]2 = 1 −

[
θ

α(θ + p) + θ(y + 2)

]2

< 1,

we can assume that P(Y = y) is log-concave. An immediate consequence is that the EPQL distribution
has the IFR property.

Remark 3.1. For p = 1, as expected, the EPQL distribution becomes a Poisson quasi-Lindley model.

Remark 3.2. For α = θ, the PGF (3.2) is written as

GY(s) =
θ2

θ + 1
θ − ps + p + 1
(θ − ps + p)2 , (3.9)

which is the PGF of a marginal distribution in two bivariate Poisson-Lindley models examined by [11].

Remark 3.3. It is of interest to know that [40] also studied in detail a univariate distribution with PGF
given by Eq (3.9), which they called a binomial-discrete Poisson-Lindley distribution.

Remark 3.4. For α = 1, the characteristics of the EPQL distribution become properties of an extended
Poisson-new XLindley distribution.

In particular,

P(Y = y;α, θ, p) = p
θ

2
p + θ(y + 2)
(θ + p)y+2 , y = 0, 1, . . . , (3.10)

and

GY(s) =
θ

2
2θ − ps + p

(θ − ps + p)2 . (3.11)

4. Bivariate Poisson quasi-Lindley and Poisson-new XLindley distributions

In this section, motivated by the ongoing necessity of car insurance companies to continuously
improve their bonus-malus policies we introduce and study bivariate versions of the distributions
discussed in Section 2. Relative applications are given in Section 6.

4.1. A bivariate Poisson quasi-Lindley model

4.1.1. Definition and genesis

Definition 4.1. A bivariate RV (X1, X2) is said to have a bivariate Poisson quasi-Lindley distribution
with parameters α > 0, θ > 0, 0 < p < 1 if its PF is

P(X1 = x1, X2 = x2) =
(
x1

x2

)
px2qx1−x2

θ

α + 1
α(θ + 1) + θ(x1 + 1)

(θ + 1)x1+2

x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1, q = 1 − p (4.1)
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or if its PGF is

GX1,X2(s1, s2) =
θ

α + 1
α(θ − qs1 − ps1s2 + 1) + θ

(θ − qs1 − ps1s2 + 1)2 (4.2)

with marginals

GX1(s1) =
θ

α + 1
α(θ − s1 + 1) + θ

(θ − s1 + 1)2 ,

which corresponds to the PGF of a Poisson quasi-Lindley distribution discussed in Section 2 and

GX2(s2) =
θ

α + 1
α(θ − ps2 + p) + θ

(θ − ps2 + p)2 ,

which is the PGF of an EPQL distribution introduced and studied in Section 3.

4.1.2. Derivation as a bivariate Poisson mixture

A bivariate Poisson (Poisson-Bernoulli) distribution with PGF

GX1,X2(s1, s2) = exp{λ[q(s1 − 1) + p(s1s2 − 1)]} (4.3)

was derived by [41], see also [42], to express the joint distribution of the number of accidents and the
number of fatal accidents. By assuming that λ is an RV with MGF MΛ(·), then Eq (4.3) becomes

GX1,X2(s1, s2) = MΛ[q(s1 − 1) + p(s1s2 − 1)]. (4.4)

Furthermore, if Λ is a continuous RV with MGF given by Eq (2.6), from Eq (4.4) we obtain

GX1,X2(s1, s2) =
θ

α + 1
α(θ − qs1 − ps1s2 + 1) + θ

(θ − qs1 − ps1s2 + 1)2 ,

which is the PGF of a bivariate Poisson quasi-Lindley distribution given by Eq (4.2).

4.1.3. Derivation from the general structure X2 = Z1 + Z2 + · · · + ZX1

Assume that the RVs Zi, i = 1, 2, . . . , X1 are independent, identically distributed (i.i.d.)
Bernoulli (p) RVs also independent of the RV X1. Then

P(X2 | X1 = x1) =
(
x1

x2

)
px2qx1−x2 . (4.5)

i) Derivation when the PF of the marginal RV X1 is known.
Since

P(X1 = x1, X2 = x2) =
(
x1

x2

)
px2qx1−x2 P(X1 = x1),

if X1 follows a Poisson quasi-Lindley distribution with PF given by Eq (2.1), then the PF of the bivariate
Poisson quasi-Lindley distribution given by Eq (4.1) is immediately obtained.

ii) Derivation when the PGF of the marginal RV X1 is known.
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Since GX2 |X1(s1) = (q + ps2)x1 , from [43, 44],

GX1,X2(s1, s2) = GX1(s1(q + ps2)). (4.6)

Consequently, if X1 follows a Poisson quasi-Lindley distribution with PGF given by Eq (2.2), then
from Eq (4.6),

GX1,X2(s1, s2) =
θ

α + 1
α(θ − qs1 − ps1s2 + 1) + θ
θ(qs1 − ps1s2 + 1)2 ,

which is the PGF of a bivariate Poisson quasi-Lindley distribution.
iii) Derivation when the regression function m(x2) = E[X1 | X2 = x2] is known.
This technique is closely related to a characterization theorem proved by [44].

Proposition 4.1. Let the conditional distribution P(X2 | X1 = x1) be of the form (4.5). Also, let

m(x2) = x2 + q
x2 + 1
θ + p

α(θ + p) + θ(x2 + 2)
α(θ + p) + θ(x2 + 1)

.

Then GX1,X2(s1, s2) is given by Eq (4.2).

Proof. Using the combinatorial identity

x1

(
x1

x2

)
= (x2 + 1)

(
x1

x2 + 1

)
+ x2

(
x1

x2

)
and Eq (4.5), we obtain

m(x2) = x2 +
q
p

(x2 + 1)
P(X2 = x2 + 1)

P(X2 = x2)
. (4.7)

Hence,

P(X2 = x2) = P(X2 = 0)
( p

q

)x2
x2−1∏
k=0

1
k + 1

(m(k) − k)

= P(X2 = 0)
( p

q

)x2
x2−1∏
k=0

q
θ + p

α(θ + p) + θ(k + 2)
α(θ + p) + θ(k + 1)

= P(X2 = 0)px2
1

(θ + p)x2

α(θ + p) + θ(x2 + 1)
α(θ + p) + θ

.

Since
P(X2 = 0) =

θ

α + 1
α(θ + p) + θ

(θ + p)2 ,

from the initial condition
∑
x2

P(X2 = x2) = 1, we obtain

P(X2 = x2) = px2
θ

α + 1
α(θ + p) + θ(x2 + 1)

(θ + p)x2+2 .
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This is the PF of an EPQL distribution with parameters α > 0, θ > 0, 0 < p < 1 as denoted by Eq (3.1).
Its corresponding PGF is given by Eq (3.2).

However, since
GX2(s) = GX1(q + ps),

we have

GX1(s) = GX2

( s − q
p

)
=
θ

α + 1
α(θ − s + 1) + θ

(θ − s + 1)2 ,

and from Eq (4.6), the bivariate PGF given by Eq (4.2) is obtained.

4.1.4. Derivation by the addition of independent bivariate RVs

Bivariate Poisson quasi-Lindley distributions can be obtained using the general structure

R1 = U1 + V1,

R2 = U2 + V2,
(4.8)

where (U1,U2) and (V1,V2) are independently distributed bivariate discrete RVs. Then the PGF of
(R1,R2) is given by

GR1,R2(s1, s2) = GU1,U2(s1, s2)GV1,V2(s1, s2). (4.9)

This technique was initially suggested by [45] and also reported in the book by [46]. Bivariate Poisson
generalized Lindley distributions were also derived by [13] using the above procedure.

Proposition 4.2. Consider two independent bivariate RVs (U1,U2) and (V1,V2). Let (U1,U2) follow a
bivariate geometric-Bernoulli distribution introduced by [47] with parameters

q
θ + 1

,
p
θ + 1

and PGF

GU1,U2(s1, s2) =
θ

θ − qs1 − ps1s2 + 1
. (4.10)

In addition, assume that the RV (V1,V2) follows a bivariate geometric-Bernoulli distribution with
added zeros in the (0, 0) cell and PGF

GV1,V2(s1, s2) = ω + (1 − ω)GU1,U2(s1, s2).

For ω =
α

α + 1
,

i) GV1,V2(s1, s2) =
α(θ − qs1 − ps1s2 + 1) + θ

(α + 1)(θ − qs1 − ps1s2 + 1)
,

and

ii) GR1,R2(s1, s2) =
θ

α + 1
α(θ − qs1 − ps1s2 + 1) + θ

(θ − qs1 − ps1s2 + 1)2 ,

which is the PGF of a bivariate Poisson quasi-Lindley distribution.
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Proof. Similar to the one given for Proposition 2.2.

Remark 4.1. The above derivation supports empirical evidence (see Tables 1–3 in Section 6), that
bivariate Poisson quasi-Lindley distributions defined by Eq (4.2) are appropriate for fitting data with a
large number of observations in the (0, 0) cell.

4.1.5. Properties

Differentiating the PGF given by Eq (4.2), we obtain the marginal means (see also Sections 2 and 3)

E(X1) =
α + 2

(α + 1)θ
, (4.11)

E(X2) = p
α + 2

(α + 1)θ
, (4.12)

and
E(X1X2) = p

2(α + 3) + (α + 2)θ
(α + 1)θ2

.

Consequently,

Cov(X1, X2) = p
(α2 + 4α + 2) + (α2 + 3α + 2)θ

(α + 1)2θ2
,

which is positive.
To derive the conditional PGF of GX2 |X1=x1(s) of the RV X2, given X1 = x1, we use the following

result due to [48].
For a bivariate discrete RV (X1, X2) with PGF GX1,X2(s1, s2), the conditional PGF GX2 |X1=x1(s) of X2

on X1 is

GX2 |X1=x1(s) =
G(x1,0)(0, s)
G(x1,0)(0, 1)

, (4.13)

where

G(x,y)(u, v) =
∂x+yG(s1, s2)
∂sx

1∂s
y
2

∣∣∣∣∣ s1 = u.
s2 = v.

Consequently, from Eqs (4.2) and (4.13),

GX2 |X1=x1(s) = (q + ps)x1 ,

and as stated in Subsection 4.1.3 (i),

P(X1 = x1, X2 = x2) =
(
x1

x2

)
px2qx1−x2 P(X1 = x1)

=
x1!px2qx1−x2

x2!(x1 − x2)!
θ

α + 1
α(θ + 1) + θ(x1 + 1)

(θ + 1)x1+2 , (4.14)

θ > 0, x > 0, 0 < p < 1, x1 = 0, 1, . . ., and x2 = 0, 1, . . . , x1.
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Simple recurrences for the probabilities are:

P(X1 = x1 + 1, X2 = x2) =
x1 + 1

x1 + 1 − x2

q
θ + 1

α(θ + 1) + θ(x1 + 2)
α(θ + 1) + θ(x1 + 1)

P(X1 = x1, X2 = x2), (4.15)

x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1,

and

P(X1 = x1, X2 = x2 + 1) =
x1 − x2

x2 + 1
p
q

P(X1 = x1, X2 = x2), x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1, (4.16)

with

P(X1 = 0, X2 = 0) = G(0, 0) =
θ

α + 1
α(θ + 1) + θ

(θ + 1)2 . (4.17)

The conditional PGF GX1 |X2=x2(s) of X1 on X2, from Eqs (4.2) and (4.13), is

GX1 |X2=x2(s) = sx2
α(θ − qs + 1) + (x2 + 1)θ

(θ − qs + 1)x2+2

(θ + p)x2+2

α(θ + p) + θ(x2 + 1)
. (4.18)

Differentiating Eq (4.18), we obtain

E[X1 | X2 = x2] = x2 + q
x2 + 1
θ + p

α(θ + p) + θ(x2 + 2)
α(θ + p) + θ(x2 + 1)

.

The above regression can also be obtained from Eq (4.7).

Remark 4.2. For α = θ, the PGF (4.2) is written as

GX1,X2(s1, s2) =
θ2

θ + 1
θ − qs1 − ps1s2 + 2

(θ − qs1 − ps1s2 + 1)2 ,

which is the PGF of a bivariate Poisson-Lindley distribution introduced by [11].

4.2. Bivariate Poisson-new XLindley distribution

The results in this subsection will be stated briefly.

4.2.1. Definition and genesis

Definition 4.2. A bivariate RV (X1, X2) is said to have a bivariate Poisson-new XLindley distribution
with parameters θ > 0, 0 < p < 1, if its PF is

P(X1= x1, X2= x2) =
(
x1

x2

)
px2qx1−x2

θ

2
1 + θ(x1 + 2)

(θ + 1)x1+2 , x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1, (4.19)

or if its PGF is

GX1,X2(s1, s2) =
θ

2
2θ − qs1 − ps1s2 + 1

(θ − qs1 − ps1s2 + 1)2 , (4.20)

AIMS Mathematics Volume 11, Issue 2, 3772–3810.



3790

with marginals

GX1(s1) =
θ

2
2θ − s1 + 1

(θ − s1 + 1)2 ,

and

GX2(s2) =
θ

2
2θ − ps2 + p

(θ − ps2 + p)2 ,

which are the PGFs of a Poisson-new XLindley and an extended Poisson-new XLindley distribution
given by Eqs (2.15) and (3.11), respectively.

4.2.2. Derivation as a bivariate Poisson mixture

From Eq (4.4), if Λ is a continuous RV with MGF given by Eq (2.16), Eq (4.20) is derived.

4.2.3. Derivation from the general structure X2 = Z1 + Z2 + · · · + ZX1

Assume that the Zi are independent and identically distributed (IID) Bernoulli (p) RVs

i) Derivation when the PF of the marginal RV X1 is known.
From P(X2 | X1 = x1) given by Eq (4.5) and the PF of X1 given by Eq (2.14), Eq (4.19) is obtained.

ii) Derivation when the PGF of the marginal RV X1 is known.
When the PGF of X1 is given by Eq (2.15), utilizing Eq (4.6), Eq (4.20) is derived.

iii) Derivation when the regression function m(x2) = E[X1 | X2 = x2] is known.

Proposition 4.3. Let the conditional distribution P(X2 | X1 = x1) be of the form (4.5). Also, let

m(x2) = x2 + q
x2 + 1
θ + p

1 + θ(x2 + 3)
p + θ(x2 + 2)

.

Then GX1,X2(s1, s2) is given by Eq (4.20).

Proof. Similar to the one given for Proposition 4.1.

4.2.4. Derivation by the addition of independent bivariate RVs

Proposition 4.4. The bivariate Poisson-new XLindley distribution can be written as a convolution of a
bivariate geometric-Bernoulli distribution with PGF given by Eq (4.10) and an independent bivariate

inflated geometric-Bernoulli distribution with inflation parameter ω =
1
2

. Then their sum follows a
bivariate Poisson-new XLindley distribution with PGF given by Eq (4.20).

Proof. Similar to the one given for Proposition 2.2.
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4.2.5. Properties

Some characteristic properties are:

E(X1) =
3
2θ
,

E(X2) = p
3
2θ
,

E(X1X2) = p
8 + 3θ

2θ2
,

Cov(X1, X2) = p
7 + 6θ

4θ2
,

which is positive.
Recurrences for probabilities can be obtained from the relations

P(X1 = x1 + 1, X2 = x2) =
x1 + 1

x1 + 1 − x2

q
θ + 1

1 + θ(x1 + 3)
1 + θ(x1 + 2)

P(X1 = x1, X2 = x2),

x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1,

and

P(X1 = x1, X2 = x2 + 1) =
x1 − x2

x2 + 1
p
q

P(X1 = x1, X2 = x2), x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1,

with

P(X1 = 0, X2 = 0) =
θ

2
1 + 2θ

(θ + 1)2 .

The PGF of the conditional distribution of X1 on X2 is

GX1 |X2=x2(s) = sx2
1 − qs + θ(x2 + 2)

(θ − qs + 1)x2+2

(θ + p)x2+2

p + θ(x2 + 2)
, (4.21)

and from Eq (4.21),

E[X1 | X2 = x2] = x2 + q
x1 + 1
θ + p

p + θ(x2 + 3)
p + θ(x2 + 2)

.

5. Extended bivariate Poisson quasi-Lindley and Poisson-new XLindley distributions

In this section, we introduce bivariate Poisson quasi-Lindley and Poisson-new XLindley
distributions, which are structurally different from the bivariate models discussed in the previous
section. However, these models can also be used in a variety of problems in accident data analysis,
for example, in automobile portfolios to describe the interrelations between bodily injury and material
damage. Relative applications are given in Section 7.
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5.1. An extended bivariate Poisson quasi-Lindley distribution

5.1.1. Definition and genesis

Definition 5.1. A bivariate RV (X1, X2) is said to have an extended bivariate Poisson quasi-Lindley
distribution with parameters α > 0, θ > 0, 0 < p < 1 if its PF is

P(X1 = x1, X2 = x2) =
(
x1 + x2

x2

)
px2qx1

θ

α + 1
α(θ + 1) + θ(x1 + x2 + 1)

(θ + 1)x1+x2+2 ,

xi = 0, 1, . . . , i = 1, 2, (5.1)

or if its PGF is

GX1,X2(s1, s2) =
θ

α + 1
α(θ − qs1 − ps2 + 1) + θ

(θ − qs1 − ps2 + 1)2 . (5.2)

The marginals have PGFs

GX1(s1) =
θ

α + 1
α(θ − qs1 + q) + θ

(θ − qs1 + q)2 ,

and
GX2(s2) =

θ

α + 1
α(θ − ps2 + p) + θ

(θ − ps2 + p)2 .

They are EPQL distributions with parameters, θ > 0, α > 0, 0 < q < 1 and θ > 0, α > 0, 0 < p < 1,
respectively. It is of interest to note, that the distribution of the sum X1 + X2 has PGF

GX1+X2(s) =
θ

α + 1
α(θ − s + 1) + θ

(θ − s + 1)2 ,

which is the PGF of a Poisson quasi-Lindley distribution.

5.1.2. Derivation by generalizing a bivariate binomial distribution

Consider a bivariate binomial distribution introduced by [49] with PGF

E(sX1
1 sX2

2 | N = n) = (qs1 + ps2)n, 0 < p < 1,

and q = 1 − p, where N is a non-negative integer-valued RV with PGF

E(sN) = hN(s).

Consequently,

GX1,X2(s1, s2) = hN(qs1 + ps2). (5.3)

If N follows a Poisson quasi-Lindley distribution with PGF given by Eq (2.2), see also Subsection 3.1.1,
then the PGF of the joint distribution of (X1, X2) is

GX1,X2(s1, s2) =
θ

α + 1
α(θ − qs1 − ps2 + 1) + θ

(θ − qs1 − ps2 + 1)2 ,

which corresponds to Eq (5.2).
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5.1.3. Derivation as a bivariate Poisson mixture

Consider a bivariate Poisson distribution with PGF

GX1,X2(s1, s2) = exp{λ[q(s1 − 1) + p(s2 − 1)]}.

Then, if λ is a continuous RV with MGF MΛ(·), then

GX1,X2(s1, s2) = MΛ[q(s1 − 1) + p(s2 − 1)]. (5.4)

In addition, if we assume that MΛ(·) is given by Eq (2.6), then Eq (5.2) is obtained.

5.1.4. Derivation by the addition of independent bivariate RVs

As in the Subsection 4.1.4, we can construct extended bivariate Poisson quasi-Lindley distributions
with PGF given by Eq (5.2) by the addition of independent RVs.

Proposition 5.1. Consider two independent bivariate RVs (U1,U2), (V1,V2) and a bivariate RV (R1,R2)
defined by the structure (4.8) . Assume that (U1,U2) follows a bivariate geometric distribution with
parameters

( q
θ + 1

,
p
θ + 1

)
and PGF

GU1,U2(s1, s2) =
θ

θ − qs1 − ps2 + 1
. (5.5)

Furthermore, let the RV (V1,V2) follow a bivariate geometric distribution with added zeros in the (0, 0)
cell and PGF

GV1,V2(s1, s2) = ω + (1 − ω)GU1,U2(s1, s2).

For ω =
α

α + 1
,

i) GV1,V2(s1, s2) =
α(θ − qs1 − ps2 + 1) + θ

(α + 1)(θ − qs1 − ps2 + 1)
,

and

ii) GR1,R2(s1, s2) =
θ

α + 1
α(θ − qs1 − ps2 + 1) + θ

(θ − qs1 − ps2 + 1)2 ,

which is the PGF of an extended bivariate Poisson-quasi-Lindley distribution given by Eq (5.2).

Proof. Similar to the one given for Proposition 2.2.

Remark 5.1. The above derivation supports empirical evidence (see Table 4 in Section 7), that bivariate
Poisson quasi-Lindley distributions defined by Eq (5.2) are appropriate for fitting data with a large
number of observations in the (0, 0) cell.
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5.1.5. Properties

i) Probabilities and moments.

Differentiating Eq (5.3), we obtain

∂x1+x2G(s1, s2)
∂sx1

1 ∂s
x2
2

= qx1 px2h(x1+x2)
N (qs1 + ps2). (5.6)

Consequently, from Eq (5.6),

P(X1 = x1, X2 = x2) =
qx1 px2

x1!x2!
h(x1+x2)

N (0)

=

(
x1 + x2

x2

)
qx1 px2 P(N = x1 + x2), (5.7)

and

µ[r,k] = qr pkµ[r+k]:N , (5.8)

where
µ[r,k] = E(X(r)

1 X(k)
2 ).

Assume that the RV N follows a Poisson quasi-Lindley distribution. Then, from Eqs (5.7) and (2.1)
Eq (5.1) is obtained, and from Eqs (5.8) and (2.13), we have

µ[r,k] = qr pk (r + k)!
α + 1

α + r + k + 1
θr+k . (5.9)

From Eq (5.1), the probabilities can be calculated recursively from the relations

P(X1 = x1 + 1, X2 = x2) =
x1 + 1 + x2

x1 + 1
q
θ + 1

α(θ + 1) + θ(x1 + x2 + 2)
α(θ + 1) + θ(x1 + x2 + 1)

P(X1 = x1, X2 = x2), (5.10)

xi = 0, 1, . . . , i = 1, 2,

and

P(X1 = x1, X2 = x2 + 1) =
x1 + x2 + 1

x2 + 1
p
θ + 1

α(θ + 1) + θ(x1 + x2 + 2)
α(θ + 1) + θ(x1 + x2 + 1)

P(X1 = x1, X2 = x2), (5.11)

xi = 0, 1, . . . , i = 1, 2,

with

P(X1 = 0, X2 = 0) =
θ

α + 1
α(θ + 1) + θ

(θ + 1)2 . (5.12)

From Eq (5.9), we obtain the marginal means, as also expected from Section 3,

E(X1) = q
(α + 2)
(α + 1)θ

, (5.13)
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E(X2) = p
(α + 2)
(α + 1)θ

. (5.14)

In adddition,

E(X1X2) =
2pq
α + 1

α + 3
θ2
.

Hence,

Cov(X1, X2) = pq
α2 + 4α + 2
(α + 1)2θ2

,

which is positive.
ii) Conditional distributions.
From Eqs (4.13) and (5.3),

GX2 |X1=x1(s) =
h(x1)

N (ps)

h(x1)
N (p)

. (5.15)

Assume that the RV N follows a Poisson quasi-Lindley distribution.
Then, from Eq (2.12),

GX2 |X1=x1(s) =
α(θ − ps + 1) + θ(x1 + 1)

(θ − ps + 1)x1+2

(θ + q)x1+2

α(θ + q) + θ(x1 + 1)
,

and we can easily prove, that

P(X2 = x2 | X1 = x1) =
(
x1 + x2

x1

)
px2
α(θ + 1) + θ(x1 + x2 + 1)

(θ + 1)x1+x2+2

(θ + q)x1+2

α(θ + q) + θ(x1 + 1)
, x2 = 0, 1, . . . .

The conditional probabilities can be easily computed by using the recurrence

P(X2 = x2 + 1 | X1 = x1) =
x1 + x2 + 1

x2 + 1
p
θ + 1

α(θ + 1) + θ(x1 + x2 + 2)
α(θ + 1) + θ(x1 + x2 + 1)

P(X2 = x2 | X1 = x1),

where

P(X2 = 0 | X1 = x1) =
α(θ + 1) + θ(x1 + 1)

(θ + 1)x1+2

(θ + q)x1+2

α(θ + q) + θ(x1 + 1)
.

From Eqs (5.15) and (2.12),

µ[τ|X1=x1] = pτ
h(x1+τ)

N (p)

h(x1)
N (p)

=
(x1 + τ)!

x1!
pτ

(θ + q)τ
α(θ + q) + θ(x1 + τ + 1)
α(θ + q) + θ(x1 + 1)

. (5.16)

Hence,

E[X2 = x2 | X1 = x1] =
p(x1 + 1)
θ + q

α(θ + q) + θ(x1 + 2)
α(θ + q) + θ(x1 + 1)

.

Corresponding relations for the conditional distribution of X1 | X2 = x2 can also be derived.

Remark 5.2. For α = θ, the PGF (5.2) is written as

GX1,X2(s1, s2) =
θ2

θ + 1
θ − qs1 − ps2 + 2

(θ − qs1 − ps2 + 1)2 ,

which is the PGF of another bivariate Poisson-Lindley distribution introduced by [11].
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5.2. Extended bivariate Poisson-new XLindley distribution

The results in this subsection will be stated briefly.

5.2.1. Definition and genesis

Definition 5.2. A bivariate RV (X1, X2) is said to have an extended bivariate Poisson-new XLindley
distribution with parameters θ > 0, 0 < p < 1, if its PF is

P(X1 = x1, X2 = x2) =
(
x1 + x2

x2

)
px2qx1

θ

2
1 + θ(x1 + x2 + 2)

(θ + 1)x1+x2+2 , xi = 0, 1, . . . , i = 1, 2, (5.17)

or if its PGF is

GX1,X2(s1, s2) =
θ

2
2θ − qs1 − ps2 + 1

(θ − qs1 − ps2 + 1)2 . (5.18)

In addition,

GX1(s1) =
θ

2
2θ − qs1 + q

(θ − qs1 + q)2 ,

GX2(s2) =
θ

2
2θ − ps2 + p

(θ − ps2 + p)2 ,

GX1+X2(s) =
θ

2
2θ − s + 1

(θ − s + 1)2 .

The PGFs of the marginal X1 and X2 are extended Poisson-new XLindley distributions, and the PGF
of the sum X1 + X2 is a Poisson-new XLindley distribution.

5.2.2. Derivation by generalizing a bivariate binomial distribution

From the general Eq (5.3), if N follows a Poisson-new XLindley distribution, then the joint PGF of
(X1, X2) is given by Eq (5.18).

5.2.3. Derivation as a bivariate Poisson mixture

From Eq (5.4), if Λ is a continuous RV with MGF given by Eq (2.16), then Eq (5.18) is obtained.

5.2.4. Derivation by the addition of independent bivariate RVs

Proposition 5.2. The bivariate extended Poisson-new XLindley distribution can be obtained by the
addition of a bivariate geometric distribution with PGF given by Eq (5.5) and an independent bivariate

inflated geometric distribution with inflation parameter ω =
1
2

. Then the PGF of their sum is given by
Eq (5.18).

Proof. Similar to the one given for Proposition 2.2.
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5.2.5. Properties

Some characteristics of the distribution are the following.
If N follows a Poisson-new XLindley distribution, from Eq (5.7), we obtain Eq (5.17), and from

Eq (5.8), the expression

µ[r,k] = qr pk (r + k)!
2

r + k + 2
θτ+k , (5.19)

respectively.
From Eq (5.17), the probabilities can be calculated recursively from the relations

P(X1 = x1 + 1, X2 = x2) =
x1 + 1 + x2

x1 + 1
q
θ + 1

1 + θ(x1 + x2 + 3)
1 + θ(x1 + x2 + 2)

P(X1 = x1, X2 = x2),

xi = 0, 1, . . . , i = 1, 2,

and

P(X1 = x1, X2 = x2 + 1) =
x1 + x2 + 1

x2 + 1
p
θ + 1

1 + θ(x1 + x2 + 3)
1 + θ(x1 + x2 + 2)

P(X1 = x1, X2 = x2),

xi = 0, 1, . . . , i = 1, 2,

with
P(X1 = 0, X2 = 0) =

θ

2
2θ + 1

(θ + 1)2 .

Also, from Eq (5.19), we obtain

E(X1) = q
3
2θ
,

E(X2) = p
3
2θ
,

E(X1X2) = pq
4
θ2
,

Cov(X1, X2) = pq
7

4θ2
,

which is positive.
In addition, from the general Eq (5.15), if we assume that N is distributed according to a Poisson-

new XLindley distribution and utilize Eq (2.17), we have

GX2 |X1=x1(s) =
1 − ps + θ(x1 + 2)

(θ + 1 − ps)x1+2

(θ + q)x1+2

q + θ(x1 + 2)
,

P(X2 = x2 | X1 = x1) =
(
x1 + x2

x1

)
px2

1 + θ(x1 + x2 + 2)
(θ + 1)x1+x2+2

(θ + q)x1+2

q + θ(x1 + 2)
.

Furthermore, from Eq (5.16) and (2.17), we obtain

µ[τ|X1=x1] =
(x1 + τ)!

x1!
pτ

(θ + q)τ
q + θ(x1 + τ + 2)

q + θ(x1 + 2)
,

E[X2 = x2 | X1 = x1] =
p(x1 + 1)
θ + q

q + θ(x1 + 3)
q + θ(x1 + 2)

.
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6. Applications to data sets of automobile insurance claims and amounts of claims

The bonus-malus systems (BMSs) are pricing systems widely used in vehicle insurance. In the
classical BMS, the premium assigned to each policyholder is based only on the number of claims
without taking into account the claim size. Several authors, see relative references in [26], suggested
that modifications of the BMS are appropriate, incorporating not only the number of claims but also
the claim size. Furthermore, from empirical studies, it appears that these two variables are positively
correlated. Consequently, bivariate discrete models with this property may be useful in the analysis of
this type of data.

We demonstrate the applicability of the bivariate Poisson-new XLindley distribution and of three
additional members of the bivariate Poisson quasi-Lindley class defined by Eq (4.1) by fitting them to
three sets of insurance data previously used, among others, by [13, 26–28].

All sets of data originally came from a portfolio of 67856 one-year automobile insurance policies
taken out in 2004 or 2005. The data set is available on the website of the Faculty of Business and
Economics, Macquaire University, Sydney, Australia; see also [50]. Out of the 67856 policies in that
portfolio, 4624 claims were made. There were 4333 policyholders who made claims once, 271 twice,
18 three times, and 2 four times. This set of data was tabulated by [26] using not only the number
of claims (variable X1) but also the total number of claims with the claim size larger than a threshold
monetary value variable (X2), Ψ = 500; see our Table 1. Relative tabulations when the threshold values
are Ψ = 1000 and Ψ = 3000 are given by [27] and are also reported in our Tables 2 and 3 respectively.

From the bivariate Poisson quasi-Lindley model defined by Eq (4.1), a large number of distributions
can be obtained for different values of the parameter α. For example, when α = 1, the resulting
distribution is, as expected, the bivariate Poisson-new XLindley model discussed in Subsection 4.2.

For demonstration purposes, we assume that the parameter α takes specific values, and the
remaining two parameters θ and p are simply estimated by using the method of moments. However,
more efficient estimation techniques exist such as the maximum likelihood method and need to be
explored in future work. It is worth noting, that for the bivariate negative binomial-Bernoulli model
introduced by [47] (with the bivariate geometric -Bernoulli defined by the PGF given by Eq (4.10)
as a special case) and the bivariate negative binomial model (with the bivariate geometric with PGF
defined by Eq (5.5) as a special case), several estimation techniques were proposed by [51] and [52],
respectively. In particular, they examined a comparative study of the methods of maximum likelihood,
moments, even points, double-zero proportion, and ratio of frequencies for large and small samples.
We have elected to fit each one of the four models obtained when a = 1, 2, 3, and 6 to the data sets of
claims and amounts of claims recorded in Tables 1–3 using moment estimators.

Since the marginal means are given by expressions (4.11) and (4.12), the remaining parameters θ
and p of the model are easily estimated from the equations

X̄1 =
α + 2

(α + 1)θ
, (6.1)

and

X̄2 = p
α + 2

(α + 1)θ
. (6.2)
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Consequently, from Eqs (6.1) and (6.2),

θ̃ =
α + 2

(α + 1)X̄1
, (6.3)

which does not depend on the value of p and

p̃ =
X̄2

X̄1
, (6.4)

which is independent of the value of the parameters α and θ.
Bivariate probabilities are easily calculated by using the recurrences

P(X1 = x1 + 1, X2 = 0) =
q
θ + 1

α + (α + x1 + 2)θ
α + (α + x1 + 1)θ

P(X1 = x1, X2 = 0), x1 = 0, 1, 2, 3

and

P(X1 = x1, X2 = x2 + 1) =
x1 − x2

x2 + 1
p
q

P(X1 = x1, X2 = x2) x1 = 1, 2, 3, 4, x2 = 0, 1, 2, 3,

with
P(X1 = 0, X2 = 0) given by Eq (4.17)

for the 67856 observations under consideration and for threshold values Ψ = 500, 1000, 3000,
observed and expected frequencies are given in Tables 1, 2, and 3 respectively. In each table, the
first line represents the observed frequencies, and the second, third, fourth, and fifth lines represent the
expected frequencies for α = 1, 2, 3, and 6 respectively. Parameter estimates and χ2 values are also
reported in these tables.

Denoting by X̄i, i = 1, 2, the sample marginal means; by S 2
Xi

, i = 1, 2, the sample marginal variances;
by DIXi , i = 1, 2, the sample index of dispersion (as we use the same notation with the population
index of dispersion); by S X1X2 the covariance; and by ρ(X1, X2), the sample correlation coefficient, the
corresponding calculated values of some characteristics of the data sets are given below.

In particular, since the values of the marginal variable X1 remain the same for all Tables 1–3, we
have X̄1 = 0.072757, S 2

X1
= 0.077397, and DIX1 = 1.063779.

The remaining characteristics for Tables 1, 2 and 3 respectively, are as follows:

X̄2 = 0.042531, S 2
X2
= 0.045144, DIX2 = 1.061435, S X1X2 = 0.045937, ρ(X1, X2) = 0.777131,

X̄2 = 0.029710, S 2
X2
= 0.030596, DIX2 = 1.029829, S X1X2 = 0.031395, ρ(X1, X2) = 0.645159,

X̄2 = 0.012247, S 2
X2
= 0.012480, DIX2 = 1.019056, S X1X2 = 0.012564, ρ(X1, X2) = 0.404263.

From the values of the correlation coefficients, it appears that strong positive relations exist between
the number of claims and the amount of claims (especially for the data of Table 1).

To compute the corresponding chi-squared test statistics, we followed an approach suggested
by [26]. We grouped classes to produce a theoretical class of 5 or larger. The degrees of freedom
of the relative χ2 statistic in accordance with [26], were n − k − 2, where n is the number of classes
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considered and k the number of parameters. For Tables 1–3, seven categories were considered, and the
calculated χ2 values had 3 degrees of freedom. However, different groupings were selected for each
table. In particular, for Table 1, the groupings were
(0, 0), (1, 0), (1, 1), (2, 0), {(2, 1), (2, 2)}, {(3, 2), (3, 3)}, {(3, 0), (3, 1), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)};
for Table 2,
(0, 0), (1, 0), (1, 1), (2, 2), {(2, 0), (2, 1)}, {(3, 0), (3, 1)}, {(3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)};
and for Table 3,
(0, 0), (1, 0), (1, 1), (2, 2), (3, 0), {(2, 0), (2, 1)}, {(3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)}.

The 5% critical value of the chi-squared statistic is χ2
3(0.05) = 7.815. Since the calculated χ2 values

of the groupings used in Tables 1–3 for the values of α under consideration are less than this critical
value, we can assume that our models provide an adequate fit for these types of data1.

From Remark 4.2, for α = θ, the bivariate Poisson quasi-Lindley distribution defined by Eq (4.1)
becomes a bivariate Poisson-Lindley model introduced by [11]. Consequently, it is of interest to
examine if this value of α provides an adequate fit for our models to the observed data sets given in
Tables 1–3. Relative calculations of the expected frequencies of the corresponding bivariate Poisson-
Lindley model were already performed by [13]. However, the evaluation of the chi-squared test statistic
were computed by using different groupings from those used in this paper. Therefore, for comparison
purposes, we calculated the χ2 values for the groupings adopted for this study. From our calculations,
the corresponding χ2 values were: for Ψ = 500, χ2(3) = 5.568; for Ψ = 1000, χ2(3) = 2.248; and for
Ψ = 3000, χ2(3) = 3.007. All of them were below the value of the χ2

3(0.05) = 7.815 statistic.
Overall, we can conclude that for the examples considered, for values of the parameter α at least

in the range [1, 6], and for the groupings selected for each data set, a large number of members from
the general class of bivariate Poisson quasi-Lindley distributions defined by Eq (4.1) fit the relative
data sets satisfactorily. Of course, it is expected that for additional values of the parameter α, not
necessarily the same for each data set, or alternative groupings of the data sets, several other members
of the bivariate distribution will provide a satisfactory fit.

However, to select the best model among those that, according to Pearson’s chi-squared test
statistic, fit a specific set of data satisfactorily, we need additional criteria. Two model selection
methods based on likelihood functions and frequently used in applications are the Akaike Information
Criterion/Baysian Information Criterion (AIC/BIC). Using AIC/BIC, the best model is the one that
minimizes information loss, balancing goodness of fit with parsimony.

1The goodness of fit was determined by standard Pearson’s chi-squared test statistic given by

χ2 =

7∑
i=1

(Observedi − Expectedi)
2

Expectedi
.

In particular, for Table 1 with α = 1, the corresponding observed (Oi) and expected (Ei) values are, respectively:

Oi : 63233 1840 2493 37 234 12 8

Ei : 63220.00 1808.09 2544.20 46.15 221.24 9.65 6.63

and the calculated χ2 value was χ2(3) = 4.999 as reported in Table 1.
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Table 1. Size of claims (X1) and total number of claims with claim size larger than a threshold
monetary value (X2) Ψ = 500 from a portfolio of 67856 automobile insurance policies

Size of claims
0 1 2 3 4 Total

Number of claims

63232 63232
63220.00 63220.00

0 63235.02 63235.02
63241.88 63241.88
63249.22 63249.22
1840 2493 4333
1808.09 2544.20 4352.29

1 1796.52 2527.92 4324.44
1791.28 2520.54 4311.82
1785.71 2512.70 4298.41
37 117 117 271
46.15 129.87 91.37 267.39

2 48.02 135.13 95.07 278.22
48.84 137.45 96.70 282.99
49.70 139.86 98.40 287.96
1 5 5 7 18
1.11 4.67 6.57 3.08 15.43

3 1.23 5.21 7.33 3.44 17.21
1.30 5.47 7.70 3.61 18.08
1.37 5.77 8.12 3.81 19.07
0 0 1 0 1 2
0.03 0.14 0.30 0.28 0.10 0.85

4 0.03 0.17 0.37 0.34 0.12 1.03
0.03 0.19 0.40 0.38 0.13 1.13
0.04 0.21 0.44 0.42 0.15 1.26
65110 2615 123 7 1 67856
65075.38 2678.88 98.24 3.36 0.10 67855.96
65080.82 2668.43 102.77 3.78 0.12 67855.92

Total 65083.33 2663.65 104.80 3.99 0.13 67855.90
65086.04 2658.54 106.96 4.23 0.15 67855.92

For α = 1 p̃ = 0.584566 θ̃ = 20.616569 χ2(3) = 4.999
For α = 2 p̃ = 0.584566 θ̃ = 18.325839 χ2(3) = 4.305
For α = 3 p̃ = 0.584566 θ̃ = 17.180474 χ2(3) = 4.494
For α = 6 p̃ = 0.584566 θ̃ = 15.707862 χ2(3) = 5.151
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Table 2. Size of claims (X1) and total number of claims with claim size larger than a threshold
monetary value (X2) Ψ = 1000 from a portfolio of 67856 automobile insurance policies.

Size of claims
0 1 2 3 4 Total

Number of claims

63232 63232
63220.00 63220.00

0 63235.02 63235.02
63241.88 63241.88
63249.22 63249.22
2551 1782 4333
2575.05 1777.24 4352.29

1 2558.58 1765.87 4324.45
2551.11 1760.71 4311.82
2543.18 1755.24 4298.42
109 114 48 271

93.60 129.20 44.59 267.39
2 97.39 134.44 46.39 278.22

99.07 136.75 47.19 283.01
100.80 139.14 48.02 287.96
5 6 6 1 18
3.20 6.62 4.57 0.11 14.50

3 3.57 7.38 5.10 1.17 17.22
3.75 7.76 5.35 1.23 18.09
3.95 8.18 5.65 1.30 19.08
1 0 0 1 0 2
0.11 0.29 0.30 0.14 0.02 0.86

4 0.13 0.35 0.36 0.17 0.03 1.04
0.14 0.38 0.40 0.18 0.03 1.13
0.15 0.42 0.44 0.20 0.04 1.25
65898 1902 54 2 0 67856
65891.96 1913.35 49.46 0.25 0.02 67855.04
65894.69 1908.04 51.85 1.34 0.03 67855.95

Total 65895.95 1905.60 52.94 1.41 0.03 67855.93
65897.30 1902.98 54.11 1.50 0.04 67855.93

For α = 1 p̃ = 0.408345 θ̃ = 20.616569 χ2(3) = 2.804
For α = 2 p̃ = 0.408345 θ̃ = 18.325839 χ2(3) = 0.957
For α = 3 p̃ = 0.408345 θ̃ = 17.180474 χ2(3) = 1.209
For α = 6 p̃ = 0.408345 θ̃ = 15.707862 χ2(3) = 1.861
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Table 3. Size of claims (X1) and total number of claims with claim size larger than a threshold
monetary value (X2) Ψ = 3000 from a portfolio of 67856 automobile insurance policies.

Size of claims
0 1 2 3 4 Total

Number of claims

63232 63232
63220.00 63220.00

0 63235.02 63235.02
63241.88 63241.88
63249.22 63249.22
3576 757 4333
3619.71 732.58 4352.29

1 3596.51 727.90 4324.41
3586.06 725.77 4311.83
3574.90 723.51 4298.41
216 44 11 271
184.95 74.86 7.58 267.39

2 192.44 77.90 7.88 278.22
195.75 79.23 8.02 283.00
199.18 80.62 8.16 287.96
12 4 2 0 18
8.87 5.39 1.09 0.07 15.42

3 9.90 6.01 1.22 0.08 17.21
10.41 6.32 1.29 0.09 18.11
10.97 6.66 1.35 0.09 19.07
2 0 0 0 0 2
0.41 0.33 0.10 0.01 0.00 0.85

4 0.50 0.40 0.12 0.02 0.00 1.04
0.54 0.44 0.13 0.02 0.00 1.13
0.60 0.49 0.15 0.02 0.00 1.26
67038 805 13 0 0 67856
67033.94 813.16 8.77 0.08 0.00 67855.95
67034.37 812.21 9.22 0.10 0.00 67855.90

Total 67034.64 811.76 9.44 0.11 0.00 67855.95
67034.87 811.28 9.66 0.11 0.00 67855.92

For α = 1 p̃ = 0.168321 θ̃ = 20.616569 χ2(3) = 4.041
For α = 2 p̃ = 0.168321 θ̃ = 18.325839 χ2(3) = 3.372
For α = 3 p̃ = 0.168321 θ̃ = 17.180474 χ2(3) = 3.618
For α = 6 p̃ = 0.168321 θ̃ = 15.707862 χ2(3) = 4.239
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7. Applications to insurance claims data referring to material damage and bodily injury

In this section, we demonstrate the applicability of the bivariate Poisson-new XLindley distribution
and of three additional members of the bivariate Poisson quasi-Lindley class defined by Eq (5.1), by
fitting them to a set of claims corresponding to a large automobile portfolio in France, which includes
181038 liability policies issued during the year 1989. The yearly claim frequencies have been divided
into material damage (variable X1) and bodily injury (variable X2). This set of data was previously
used by several authors, including [8, 12, 13, 29–31].

As in the previous section, we assume that the parameter α takes the values 1, 2, 3, and 6. Since the
marginal means are given by expressions (5.13) and (5.14), estimators for the parameters θ and p are
obtained from the equations

X̄1 = q
α + 2

(α + 1)θ
, (7.1)

and

X̄2 = p
α + 2

(α + 1)θ
. (7.2)

Hence, from Eqs (7.1) and (7.2),

θ̃ =
α + 2

(α + 1)(X̄1 + X̄2)
, (7.3)

which is independent of the parameter p, and

p̃ =
X̄2

X̄1 + X̄2
, (7.4)

which does not depend on the value of the parameters α and θ. Since X̄1 = 0.051006 and X̄2 =

0.005529, from Eq (7.4), we obtain p̃ = 0.097802.
Bivariate probabilities are easily calculated by using the recurrences

P(X1 = x1 + 1, X2 = 0) =
q
θ + 1

α + (α + x1 + 2)θ
α + (α + x1 + 1)θ

P(X1 = x1, X2 = 0), x1 = 0, 1, 2, 3

and

P(X1 = x1, X2 = x2 + 1) =
x1 + x2 + 1

x2 + 1
p
θ + 1

α + (α + x1 + x2 + 2)θ
α + (α + x1 + x2 + 1)θ

P(X1 = x1, X2 = x2),

x1 = 0, 1, 2, 3, x2 = 0, 1,

with P(X1 = 0, X2 = 0) given by Eq (5.12).
Table 4 gives the observed frequencies on the first line and the expected frequencies for α = 1, 2, 3,

and 6 on the second, third, fourth, and fifth lines, respectively, together with the parameter estimates
and χ2 values. We used the seven groupings (0, 0), (0, 1), (0, 2), (1, 1), (2, 1), {(1, 0), (2, 0), (3, 0)}, and
{(1, 2), (2, 2), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2)}. Since all computed χ2 values with 3 degrees of freedom
were less than χ2

0.05(3) = 7.815, we can assume that all four models fit the data satisfactory.
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Table 4. Material damage (X1) and bodily injury (X2) claims from a portfolio of 181038
liability policies.

Bodily injuries
0 1 ≥ 2 Total

Material damage

171345 918 2 172265
171294.16 907.10 4.28 172205.54

0 171319.17 902.49 4.47 172226.13
171330.62 900.39 4.75 172235.56
171342.90 898.15 4.64 172245.69
8273 73 0 8346
8367.76 79.02 0.53 8447.31

1 8325.23 82.46 0.59 8408.28
8305.87 83.99 0.62 8390.48
8285.20 85.60 0.66 8371.46
380 5 0 394
364.47 4.85 0.04 369.36

2 380.32 5.43 0.05 385.80
387.39 5.72 0.06 393.17
394.81 6.05 0.06 400.92
31 1 0 32
14.90 0.25 0.00 15.15

3 16.70 0.31 0.00 17.01
17.59 0.34 0.00 17.93
18.60 0.38 0.00 18.98
1 0 0 1
0.59 0.01 0.00 0.60

4 0.71 0.02 0.00 0.73
0.78 0.02 0.00 0.80
0.87 0.02 0.00 0.89
180039 997 2 181038
180041.88 991.23 4.85 181037.96

Total 180042.13 990.71 5.11 181037.95
180042.25 990.46 5.23 181037.94
180042.38 990.20 5.36 181037.94

For α = 1 p̃ = 0.097802 θ̃1 = 26.532194 χ2(3) = 2.397
For α = 2 p̃ = 0.097802 θ̃2 = 23.584172 χ2(3) = 2.914
For α = 3 p̃ = 0.097802 θ̃3 = 22.110161 χ2(3) = 3.358
For α = 6 p̃ = 0.097802 θ̃6 = 20.215005 χ2(3) = 3.982

From Remark 5.2, for α = θ, the bivariate Poisson quasi-Lindley distribution defined by Eq (5.1)
becomes another form of the bivariate Poisson-Lindley distribution introduced by [11]. Consequently,
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as in the previous section, it is of interest to examine if this value of α provides an adequate fit for
our model to the observed data in Table 4. Relative calculations of the expected frequencies of the
corresponding bivariate Poisson-Lindley model were already performed by [12]. However, since
different groupings were used in that paper for the evaluation of the chi-squared test statistic, for
comparison purposes, we calculated the χ2-values using the seven groupings mentioned above. The
computed χ2 value was χ2(3) = 3.523 which is less than χ2

(3)(0.05) = 7.815.

Overall, we can conclude that, like the models in the previous section, the class of models defined by
Eq (5.1) appears to fit satisfactorily the data set of Table 4 for a wide range of values of the parameter
α.

8. Conclusions and suggestions for further research

Derivation techniques for the Poisson quasi-Lindley and the Poisson–new XLindley distributions
were discussed. In particular, they were derived as Poisson mixtures when any one of three
characteristics of the mixing distribution is known or by the addition of independent RVs. An EPQL
distribution was introduced and extensively studied. It was derived (i) by generalizing a binomial
distribution with respect to its exponent, (ii) as a Poisson mixture, and (iii) by addition of independent
RVs. It has a number of interesting characteristics, appears as marginal distribution in bivariate Poisson
quasi-Lindley models, and offers more flexibility for interpreting complex real-world data. However,
parameter estimation techniques should be discussed and compared (see for example [53]) for fitting
the distribution to real and simulated data.

Two general and structurally different bivariate Poisson quasi-Lindley and Poisson–new XLindley
distributions were introduced utilizing various techniques, including mixing, generalization, addition
of independent RVs, regression functions, and conditional distributions. Several of their characteristics
were derived, including PGFs, probabilities and their recurrences, moments, conditional distributions,
and regression functions. Several members of each class of bivariate Poisson quasi-Lindley
distributions, including bivariate Poisson–new XLindley distributions, were fitted satisfactorily
according to the χ2 criterion, by the method of moments, to a number of sets of automobile insurance
data previously used in the literature. However, more efficient methods of estimation, such as maximum
likelihood, should be considered. Furthermore, comparison between the different models should be
examined using additional criteria, like the AIC/BIC information criteria.

Since one of the problems faced by insurance companies is the derivation of meaningful
bonus–malus premiums, the class of bivariate models studied in Sections 4 and 6 can be used as the
basis for further evaluation of the corresponding premiums for the data sets given in Tables 1–3; see
for example [26–28]. Furthermore, both types of our bivariate models can be considered as possible
alternatives for interpreting sets of data with a large number of observations in the (0, 0) cell. Finally,
since some authors have suggested various applications of the Poisson-new XLindley distribution, it
may be of interest to examine relative applications of other members of the Poisson quasi-Lindley
class.
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8. E. Gómez-Dèniz, J. M. Sarabia, N. Balakrishnan, A multivariate discrete Poisson-Lindley
distribution: extensions and actuarial applications, Astin Bull., 42 (2012), 655–678.
https://doi.org/10.2143/AST.42.2.2182812

9. H. Zamani, P. Faroughi, N. Ismail, Bivariate Poisson-Lindley distribution with application, J.
Math. Stat., 11 (2015), 1–6. https://doi.org/10.3844/jmssp.2015.1.6

AIMS Mathematics Volume 11, Issue 2, 3772–3810.

http://dx.doi.org/https://doi.org/10.1111/j.1751-5823.2005.tb00250.x
http://dx.doi.org/https://doi.org/10.17713/ajs.v52i1.1344
http://dx.doi.org/https://doi.org/10.17713/ajs.v44i4.54
http://dx.doi.org/https://doi.org/10.1080/03610920902898514
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.2143/AST.42.2.2182812
http://dx.doi.org/https://doi.org/10.3844/jmssp.2015.1.6


3808

10. I. M. Rasheed, V. D’cruz, M. Radhakumari, S. A. Devi, N. M. Khan, Bivariate Poisson generalized
Lindley distributions and the associated BINAR (1) process, Aust. J. Stat., 53 (2024), 1–28.
https://doi.org/10.17713/ajs.v53i1.1551

11. H. Papageorgiou, M. Vardaki, Bivariate discrete Poisson-Lindley distributions, J. Stat. Theory
Pract., 16 (2022), 30. https://doi.org/10.1007/s42519-022-00261-z

12. M. Vardaki, H. Papageorgiou, On multivariate discrete Poisson-Lindley distributions, J. Stat.
Theory Pract., 18 (2024), 33. https://doi.org/10.1007/s42519-024-00389-0

13. M. Vardaki, H. Papageorgiou, On a Poisson generalized Lindley distribution: related models,
bivariate extensions and insurance application, REVSTAT-Stat. J., 2025. In press.

14. R. Shanker, A. Mishra, A quasi Poisson-Lindley distribution, J. Indian Stat. Assoc., 54 (2016),
113–125.

15. R. Grine, H. Zeghdoudi, On Poisson quasi-Lindley distribution and its applications, J. Mod. Appl.
Stat. Methods, 16 (2017), 403–417. https://doi.org/10.22237/jmasm/1509495660

16. E. Altun, A new model for over-dispersed count data: Poisson quasi-Lindley regression model,
Math. Sci., 13 (2019), 241–247. https://doi.org/10.1007/s40096-019-0293-5

17. M. Borah, J. Hazarika, A new quasi Poisson-Lindley distribution, J. Stat. Theory Appl., 16 (2017),
576–588. https://doi.org/10.2991/jsta.2017.16.4.11

18. R. Tharshan, P. Wijekoon, Zero-modified Poisson-modification of quasi Lindley distribution and
its applications, Stat. Transition New Ser., 23 (2022), 113-128. https://doi.org/10.2478/stattrans-
2022-0045

19. R. Shanker, K. K. Shukla, R. Shanker, A note on size-biased new quasi Poisson-Lindley
distribution, Biom. Biostat. Int. J., 9 (2020), 97–104. https://doi.org/10.15406/bbij.2020.09.00306

20. F. Z. Seghier, M. Ahsan-ul-Haq, H. Zeghdoudi, S. Hashmi, A new generalization
of Poisson distribution for over-dispersed count data: mathematical properties,
regression model and applications, Lobachevkii J. Math., 44 (2023), 3850–3859.
https://doi.org/10.1134/S1995080223090378

21. M. R. Irshad, S. Aswathy, R. Maya, S. Nadarajah, New one-parameter over-dispersed discrete
distribution and its application to the nonnegative integer-valued autoregressive model of order
one, Mathematics, 12 (2024), 81. https://doi.org/10.3390/math12010081

22. C. Benatmane, H. Zeghdoudi, R. Pakyari, Modified Poisson process: properties
and application in ruin model, Lobachevkii J. Math., 45 (2024), 4050–4059.
https://doi.org/10.1134/s1995080224604806

23. M. R. Irshad, M. Ahammed, R. Maya, S. Nadarajah, Poisson new XLindley INAR(1) process,
Ricerche Mat., 74 (2025), 2973–2993. https://doi.org/10.1007/s11587-025-00928-2

24. Z. Neche, C. Benatmane, A. Djebar, H. Zeghdoudi, Around Poisson new XLindley process:
comparison and application in actuarial science, J. Comput. Anal. Appl., 34 (2025), 150–160.

25. A. Huddari, H. Zeghdoudi, R. Vinoth, Modified bivariate Poisson-Lindley model: properties and
applications in Soccer, Int. J. Comput. Sci. Sport, 23 (2024), 22–34. https://doi.org/10.2478/ijcss-
2023-0009

AIMS Mathematics Volume 11, Issue 2, 3772–3810.

http://dx.doi.org/https://doi.org/10.17713/ajs.v53i1.1551
http://dx.doi.org/https://doi.org/10.1007/s42519-022-00261-z
http://dx.doi.org/https://doi.org/10.1007/s42519-024-00389-0
http://dx.doi.org/https://doi.org/10.22237/jmasm/1509495660
http://dx.doi.org/https://doi.org/10.1007/s40096-019-0293-5
http://dx.doi.org/https://doi.org/10.2991/jsta.2017.16.4.11
http://dx.doi.org/https://doi.org/10.2478/stattrans-2022-0045
http://dx.doi.org/https://doi.org/10.2478/stattrans-2022-0045
http://dx.doi.org/https://doi.org/10.15406/bbij.2020.09.00306
http://dx.doi.org/https://doi.org/10.1134/S1995080223090378
http://dx.doi.org/https://doi.org/10.3390/math12010081
http://dx.doi.org/https://doi.org/10.1134/s1995080224604806
http://dx.doi.org/https://doi.org/10.1007/s11587-025-00928-2
http://dx.doi.org/https://doi.org/10.2478/ijcss-2023-0009
http://dx.doi.org/https://doi.org/10.2478/ijcss-2023-0009


3809
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