This study investigated the detailed asymptotic behavior of the remainder terms in the ergodic distribution and its moments for a semi-Markovian renewal-reward process modeling an $ (s, S) $-type inventory system. We focused on systems in which the demand random variables were heavy-tailed, specifically regularly varying with index $ -\alpha $, where $ 1 < \alpha < 2 $. While the first two terms in the asymptotic expansion of such models are available in the literature, earlier works have not provided sharp quantitative descriptions of the remainder. Our aim was to derive rigorous expressions that capture the exact decay of the remainder in both the ergodic distribution function and in the corresponding moments. Building on Doney's refinement of the renewal theorem [
Citation: Aslı Bektaş Kamışlık. Investigation of remainder terms in the ergodic distribution and moments of a renewal-reward process with heavy-tailed demand[J]. AIMS Mathematics, 2026, 11(2): 3750-3771. doi: 10.3934/math.2026153
This study investigated the detailed asymptotic behavior of the remainder terms in the ergodic distribution and its moments for a semi-Markovian renewal-reward process modeling an $ (s, S) $-type inventory system. We focused on systems in which the demand random variables were heavy-tailed, specifically regularly varying with index $ -\alpha $, where $ 1 < \alpha < 2 $. While the first two terms in the asymptotic expansion of such models are available in the literature, earlier works have not provided sharp quantitative descriptions of the remainder. Our aim was to derive rigorous expressions that capture the exact decay of the remainder in both the ergodic distribution function and in the corresponding moments. Building on Doney's refinement of the renewal theorem [
| [1] |
R. Doney, The remainder in the renewal theorem, Electron. Commun. Probab., 25 (2020), 1–8. http://dx.doi.org/10.1214/20-ECP287 doi: 10.1214/20-ECP287
|
| [2] | W. Blischke, Warranty cost analysis, 1 Ed., CRC Press, 1994. http://dx.doi.org/10.1201/9780367810856 |
| [3] |
S. Çetinkaya, E. Tekin, C. Y. Lee, A stochastic model for joint inventory and outbound shipment decisions, IIE Trans., 40 (2008), 324–340. http://dx.doi.org/10.1080/07408170701487989 doi: 10.1080/07408170701487989
|
| [4] | E. A. Elsayed, Reliability engineering, Prentice Hall, 1996. |
| [5] |
E. W. Frees, Warranty analysis and renewal function estimation, Naval Res. Logist. Q., 33 (1986), 361–372. http://dx.doi.org/10.1002/nav.3800330302 doi: 10.1002/nav.3800330302
|
| [6] |
E. P. C. Kao, M. S. Smith, Computational approximations of renewal process relating to a warranty problem: the case of phase-type lifetimes, Eur. J. Oper. Res., 90 (1996), 156–170. http://dx.doi.org/10.1016/0377-2217(94)00331-9 doi: 10.1016/0377-2217(94)00331-9
|
| [7] |
S. Karlin, A. J. Fabens, Generalized renewal functions and stationary inventory models, J. Math. Anal. Appl., 5 (1959), 461–487. http://dx.doi.org/10.1016/0022-247X(62)90019-7 doi: 10.1016/0022-247X(62)90019-7
|
| [8] |
H. G. Kim, B. M. Rao, Expected warranty cost of two-attribute free-replacement warranties based on a bivariate exponential distribution, Comput. Ind. Eng., 38 (2000), 425–434. http://dx.doi.org/10.1016/S0360-8352(00)00055-3 doi: 10.1016/S0360-8352(00)00055-3
|
| [9] |
T. L. Lai, D. Siegmund, A nonlinear renewal theory with applications to sequential analysis I, Ann. Statist., 5 (1977), 946–954. http://dx.doi.org/10.1214/aos/1176343950 doi: 10.1214/aos/1176343950
|
| [10] |
G. L. Yang, A renewal-process approach to continuous sampling plans, Technometrics, 25 (1983), 59–67. http://dx.doi.org/10.1080/00401706.1983.10487820 doi: 10.1080/00401706.1983.10487820
|
| [11] | G. Aras, M. Woodroofe, Asymptotic expansions for the moments of a randomly stopped average, Ann. Statist., 21 (1993), 503–519. |
| [12] | A. A. Borovkov, Stochastic processes in queuing theory, 1 Ed., Springer, 1976. http://dx.doi.org/10.1007/978-1-4612-9866-3 |
| [13] |
F. Chen, Y. S. Zheng, Sensitivity analysis of an $(s, S)$ inventory model, Oper. Res. Lett., 21 (1997), 19–23. http://dx.doi.org/10.1016/S0167-6377(97)00019-9 doi: 10.1016/S0167-6377(97)00019-9
|
| [14] |
A. Csenki, Asymptotics for renewal-reward processes with retrospective reward structure, Oper. Res. Lett., 26 (2000), 201–209. http://dx.doi.org/10.1016/S0167-6377(00)00035-3 doi: 10.1016/S0167-6377(00)00035-3
|
| [15] | W. Feller, An introduction to probability theory and its applications, Vol. 2, 2 Eds., John Wiley, 1971. |
| [16] | I. I. Gihman, A. V. Skorokhod, The theory of stochastic processes II, Springer, Berlin, 2004. https://doi.org/10.1007/978-3-642-61921-2 |
| [17] |
A. J. E. M. Janseen, J. S. H. Van Leeuwarden, On Lerch's transcendent and the Gaussian random walk, Ann. Appl. Probab., 17 (2007), 421–439. http://dx.doi.org/10.1214/105051606000000781 doi: 10.1214/105051606000000781
|
| [18] | N. U. Prabhu, Stochastic storage processes, Queues, Insurance Risk, Dams, and Data Communication, 2 Eds., Springer-Verlag, New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1742-8 |
| [19] |
W. L. Smith, On the cumulants of renewal processes, Biometrika, 46 (1959), 1–29. http://dx.doi.org/10.1093/biomet/46.1-2.1 doi: 10.1093/biomet/46.1-2.1
|
| [20] | H. C. Tijms, Stochastic models: an algorithmic approach, John Wiley & Sons, 1994. |
| [21] |
A. B. Kamışlık, T. Kesemen, T. Khaniyev, Inventory model of type $(s, S)$ under heavy-tailed demand with infinite variance, Braz. J. Probab. Stat., 33 (2019), 39–56. http://dx.doi.org/10.1214/17-BJPS376 doi: 10.1214/17-BJPS376
|
| [22] | Z. Hanalioglu, U. N. Fescioglu, T. Khaniyev, Asymptotic expansions for the moments of the renewal-reward process with a normal distributed interference of chance, Appl. Comput. Math., 17 (2018), 141–150. |
| [23] |
A. B. Kamışlık, B. Alakoç, T. Kesemen, T. Khaniyev, A semi-Markovian renewal reward process with $\Gamma(g)$ distributed demand, Turkish J. Math., 44 (2020), 1250–1262. http://dx.doi.org/10.3906/mat-2002-72 doi: 10.3906/mat-2002-72
|
| [24] |
A. B. Kamışlık, F. Baghezze, T. Kesemen, T. Khaniyev, Moment-based approximations for stochastic control model of type $(s, S)$, Commun. Stat. Theory Methods, 53 (2024), 7505–7516. http://dx.doi.org/10.1080/03610926.2023.2268765 doi: 10.1080/03610926.2023.2268765
|
| [25] | T. Khaniyev, K. D. Atalay, On the weak convergence of the ergodic distribution for an inventory model of type $(s, S)$, Hacet. J. Math. Stat., 39 (2010), 599–611. |
| [26] |
T. Khaniyev, A. Kokangul, R. Aliyev, An asymptotic approach for a semi-Markovian inventory model of type $(s, S)$, Appl. Stoch. Models Bus. Ind., 29 (2013), 439–453. http://dx.doi.org/10.1002/asmb.1918 doi: 10.1002/asmb.1918
|
| [27] |
R. Aliyev, Ö. Ardıç, T. Khaniyev, Asymptotic approach for a renewal-reward process with a general interference of chance, Commun. Stat. Theory Methods, 45 (2016), 4237–4248. http://dx.doi.org/10.1080/03610926.2014.917679 doi: 10.1080/03610926.2014.917679
|
| [28] |
R. Aliyev, On a stochastic process with a heavy-tailed distributed component describing inventory model type of $(s, S)$, Commun. Stat. Theory Methods, 46 (2016), 2571–2579. http://dx.doi.org/10.1080/03610926.2014.1002932 doi: 10.1080/03610926.2014.1002932
|
| [29] |
J. L. Geluk, A renewal theorem in the finite-mean case, Proc. Amer. Math. Soc., 125 (1997), 3407–3413. http://dx.doi.org/10.1090/S0002-9939-97-03955-5 doi: 10.1090/S0002-9939-97-03955-5
|
| [30] | N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge University Press, 1987. |
| [31] | S. I. Resnick, Heavy-tail phenomena: probabilistic and statistical modeling, Springer, New York, 2007. http://dx.doi.org/10.1007/978-0-387-45024-7 |
| [32] | E. Seneta, Regularly varying functions, Vol. 508, Springer, Berlin, 1976. http://dx.doi.org/10.1007/BFb0079658 |
| [33] | T. I. Nasirova, C. Yapar, T. A. Khaniyev, On the probability characteristics of the stock level in the model of type $(s, S)$, Cybern. Syst. Anal., 5 (1998), 69–76. |
| [34] |
N. R. Mohan, Teugel's renewal theorem and stable laws, Ann. Probab., 4 (1976), 863–868. http://dx.doi.org/10.1214/aop/1176995991 doi: 10.1214/aop/1176995991
|
| [35] |
M. S. Sgibnev, On a renewal function when the second moment is infinite, Stat. Probab. Lett., 79 (2009), 1242–1245. http://dx.doi.org/10.1016/j.spl.2009.01.014 doi: 10.1016/j.spl.2009.01.014
|
| [36] |
J. L. Teugels, Renewal theorems when the first or the second moment is infinite, Ann. Math. Stat., 39 (1968), 1210–1219. http://dx.doi.org/10.1214/aoms/1177698246 doi: 10.1214/aoms/1177698246
|
| [37] |
D. Peša, On the smoothness of slowly varying functions, Proc. Edinburgh Math. Soc., 67 (2024), 876–891. http://dx.doi.org/10.1017/S0013091524000348 doi: 10.1017/S0013091524000348
|