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Abstract: This study investigated the detailed asymptotic behavior of the remainder terms in the
ergodic distribution and its moments for a semi-Markovian renewal-reward process modeling an
(s, S )-type inventory system. We focused on systems in which the demand random variables were
heavy-tailed, specifically regularly varying with index −α, where 1 < α < 2. While the first
two terms in the asymptotic expansion of such models are available in the literature, earlier works
have not provided sharp quantitative descriptions of the remainder. Our aim was to derive rigorous
expressions that capture the exact decay of the remainder in both the ergodic distribution function and
in the corresponding moments. Building on Doney’s refinement of the renewal theorem [1], which
distinguishes three main settings: the non-critical case α , 3/2, the critical case α = 3/2 with
square-integrable equilibrium distribution, and the case where such integrability fails, we established
new asymptotic expansions that explicitly capture the decay structure of the remainder. Using this
framework, we analyzed the remainder for both the ergodic distribution and its moments for each
scenario.
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1. Introduction

Heavy-tailed distributions have become increasingly important in the modeling of stochastic
systems that are subject to high variability and rare but significant events. In particular, distributions
with regularly varying tails of index −α for 1 < α < 2 provide a realistic description of phenomena
in which large deviations play a central role. Typical examples include insurance claims, financial
returns, service failures, and inventory demand, where light-tailed models often underestimate both
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the frequency and magnitude of extreme outcomes. The mathematical implications of heavy-tailed
behavior are substantial: classical limit theorems often require modification, variances may be infinite,
and convergence to steady-state distributions can be slow or nonstandard. In renewal-reward and
semi-Markovian processes, heavy-tailed interarrival or demand distributions have a direct impact
on the long-term behavior of performance measures such as renewal functions, cost accumulations,
and ergodic distributions. These features motivate the use of refined asymptotic tools for accurate
performance approximation and risk-aware decision-making; the present study addresses this need by
analyzing the impact of regularly varying demand on a semi-Markovian renewal-reward model.

Renewal processes, renewal-reward processes, and their variations have long been fundamental
tools in the mathematical modeling of real-world systems across diverse fields. In particular, they have
been used in warranty cost analysis [2], stochastic inventory and outbound shipment decisions [3],
reliability engineering [4], warranty analysis and renewal function estimation [5], computational
warranty-cost models based on renewal processes [6], stationary inventory models via generalized
renewal functions [7], expected warranty-cost modeling for two-attribute warranties [8], nonlinear
renewal theory with applications to sequential analysis [9], and renewal-process approaches in quality
control and sampling plans [10]. These processes provide a structured way to model random events by
assuming that interarrival times and demand sizes are independent and identically distributed (i.i.d.)
random variables.

In many practical settings, renewal processes are not isolated but interact with reward or cost
structures. Depending on the system, rewards (or costs) may either accumulate continuously over time
or occur at event epochs. Such renewal-reward functionals and their asymptotics have been studied,
for example, in the context of randomly stopped averages [11], queueing systems [12], inventory
performance and sensitivity analysis [13], and renewal-reward processes with retrospective reward
structures [14]. Foundational background on renewal theory and stochastic-process methodology
can be found in [15, 16], while related analytical tools and applied models are discussed in [17, 18].
Further results on cumulant/moment methods for renewal processes appear in [19], and an algorithmic
perspective on stochastic models is provided in [20]. These extensive applications have led to a broad
and growing body of literature.

The renewal function U(t) represents the expected number of renewals in the interval [0, t] and
plays a central role in renewal-reward process analysis. This function is central to both theoretical
investigations and practical implementations. In semi-Markovian stochastic models, frequently
employed in inventory control theory, renewal events do not occur at fixed intervals but are governed
by random time distributions. As a result, understanding the renewal function and its long-run behavior
is crucial for characterizing system performance and making informed control decisions.

In this study, we focus on a semi-Markovian renewal–reward process that models an (s, S )-type
inventory system, where the demand random variables are heavy-tailed. More precisely, the demand
random variables have finite mean and belong to the class of regularly varying distributions with tail
index −α, where 1 < α < 2. In an (s, S )-type model with uniformly distributed interference of
chance and a regularly varying tail assumption 1 < α < 2, Kamışlık et al. [21] established two-
term asymptotic expansions for the ergodic distribution, but without quantifying how the remaining
terms behave; moreover, the critical case α = 3

2 was not analyzed via the three separate regimes
considered in the present work. However, the rate at which the approximation error decays directly
affects the accuracy of long-run performance evaluations, making its explicit determination essential.
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The dynamics of the system can be formulated through the following model.
The model. The inventory level at the initial time t = 0 is assumed to be at its maximum capacity,

denoted by X(0) = S , where S represents the upper bound of the stock level. Over time, the inventory
decreases due to successive demands occurring at random time points T1,T2, . . . ,Tn, . . .. These
demands, represented by a sequence of independent random variables η1, η2, . . . , ηn, . . ., reduce the
stock level incrementally until it reaches or falls below a predefined threshold s, where 0 < s < S < ∞.
The evolution of the stock level in the depot can thus be expressed as follows:

X1 = S − η1, X2 = S − (η1 + η2), . . . , Xn = S −
n∑

i=1

ηi.

Here, the random variable ηn denotes the quantity of the n-th demand. The time points at which the
stock transitions from one level to another are given by

Tn =

n∑
i=1

ξi, n = 1, 2, . . . .

Here the random variable ξi represents the interarrival time between consecutive demands. As
each demand occurs, the inventory level decreases discretely by an amount corresponding to the
demand size. This depletion process continues until a random time τ1, defined as the first passage
time at which the stock level reaches or drops below the control level s. At this point, an immediate
replenishment occurs, restoring the stock level to S , marking the completion of one replenishment
cycle. Subsequently, a new cycle starts with the stock level reset to S , and the depletion process
repeats in an analogous manner across successive cycles.

Semi-Markovian renewal–reward processes and related modifications have been investigated in the
literature, including models with normally distributed interference of chance [22], Γ(g)-distributed
demand [23], and moment-based approximations for stochastic control models of type (s, S ) [24].
Heavy-tailed demand with infinite variance in an (s, S ) setting has been studied in [21]. Weak
convergence results for the ergodic distribution in (s, S )-type inventory models are discussed in [25],
while asymptotic approaches for semi-Markovian (s, S ) models and renewal–reward processes with
general interference of chance can be found in [26,27]. In addition to these studies, there are significant
works examining the process X(t) under heavy-tailed demand. For example, the classical (s, S )-type
inventory model with subexponential demand and finite variance was examined in [28]. By expressing
the final term of the ergodic distribution and the moments of the ergodic distribution using big-O
notation, two-term asymptotic expansions were obtained. Moreover, [21] analyzed a related model
under regularly varying demand with infinite variance and uniformly distributed interference of chance,
and derived a two-term asymptotic expansion for the ergodic distribution of the process.

Differently from the litrerature, in this study, much more precise results have been obtained for
both the ergodic distribution of the process X(t) and the moments of the ergodic distribution. While
our earlier work [21] utilized Geluk’s classical approach [29] to estimate the remainder in the renewal
function, the current study adopts Doney’s sharper asymptotic framework [1], which enables a more
precise characterization of the decay behavior of the error term. Geluk’s method [29] provides upper
bounds that are insightful but do not capture the leading asymptotic profile. In contrast, Doney’s
result [1] yields an explicit expression that reveals the exact contribution of the remainder term,
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especially near the critical case α = 3/2, where standard approximations are less effective. Doney [1]
treated three principal regimes separately: the non-critical case α , 3

2 , the critical case α = 3
2 with

square-integrable equilibrium distribution, and the case where such integrability fails.
Using Doney’s refinement of the renewal theorem [1], we analyze the remainder for both the ergodic

distribution of the considered process and its moments. In each case, we derive detailed asymptotic
expansions accompanied by explicitly quantified remainders across the entire range 1 < α < 2.
Importantly, we consider both the general case α , 3/2 and the critical case α = 3/2 within a unified
asymptotic framework.

Our approach not only refines existing methodologies but also offers a more precise characterization
of the tail behavior in these stochastic models. These findings contribute to a deeper understanding
of ergodic properties in systems governed by heavy-tailed demand distributions and provide a solid
theoretical foundation for applications in inventory modeling, risk assessment, and stochastic process
analysis.

To our knowledge, this is the first detailed, case-by-case treatment of an (s, S )-type semi-Markovian
inventory model with regularly varying demand covering the full range 1 < α < 2.

The remainder of this paper is organized as follows. In Section 2, we introduce the necessary
preliminaries, including the theoretical framework, key concepts from the theory of regular variation,
and the mathematical construction of the semi-Markovian renewal-reward process. We also present
precise formulas for the ergodic distribution and its moments that will serve as the foundation for our
asymptotic analysis. Section 3 is devoted to the main results, including deriving improved asymptotic
approximations for both the ergodic distribution and the higher-order ergodic moments in the presence
of heavy-tailed demand distributions. Special attention is given to the critical case α = 3/2, for which
refined two-term expansions are established. Finally, Section 4 concludes the paper with a summary
of our contributions and a discussion of possible directions for future research.

2. Theoretical background and preliminaries

In this section, we introduce the essential notations and provide a mathematical formulation of the
model prior to addressing the main problem.

2.1. Theory of regular variation and important results

This section presents the key definitions and foundational results that will be used throughout the
study. The well-established material is primarily drawn from [30–32].

Definition 2.1. A positive measurable function f : [0,∞) → [0,∞) is said to be regularly varying at
infinity with index α, written f ∈ RVα, if for every λ > 0,

lim
x→∞

f (λx)
f (x)

= λα. (2.1)

In the special case α = 0, that is, when for all λ > 0,

lim
x→∞

L(λx)
L(x)

= 1,

the function L is called slowly varying and we write L ∈ S V .
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Remark 2.2. Every regularly varying function f of index α can be expressed in the form

f (x) = xαL(x),

where L is a slowly varying function.

Theorem 2.3 (Karamata’s theorem [32]). Let L be slowly varying and locally bounded in [x0,∞) for
some x0 ≥ 0. Then

(a) for α > −1, ∫ x

x0

tαL(t) dt ∼ (α + 1)−1xα+1L(x), x→ ∞;

(b) for α < −1, ∫ ∞

x
tαL(t) dt ∼ −(α + 1)−1xα+1L(x), x→ ∞.

The following propositions focus on integral transforms of regularly varying functions and their
asymptotic behaviors when α = −1.

Proposition 2.4. Let L ∈ S V be locally bounded on [a,∞). Then

L̃(x) =

∫ x

a

L(t)
t

dt

is slowly varying, and L̃(x)/L(x)→ ∞.

Proposition 2.5. If
∫ ∞

x

L(t)
t

dt < ∞, then

L̃(x) =

∫ ∞

x

L(t)
t

dt

is slowly varying and L̃(x)/L(x)→ ∞.

Karamata’s result is frequently useful in various applications. It essentially states that the integrals
of regularly varying functions also exhibit regular variation. More specifically, the slowly varying
function can be factored out of the integral. This theorem is particularly valuable when analyzing
integrals involving regularly varying functions, as it simplifies their asymptotic behavior. One of the
theorems that is particularly useful when dealing with the integrals of regularly varying functions is
given below (see [32, Theorem 2.7]).

Theorem 2.6 ( [32]). Let L be slowly varying on (0,∞) and bounded on each finite subinterval of
(0,∞). Suppose the integral ∫ γ

0
t−η f (t) dt

is well-defined for some given real function f and a given number η > 0. Then as x→ ∞,∫ γ

0
f (t)L(xt) dt ∼ L(x)

∫ γ

0
f (t) dt,

for η > 0; and for η = 0 providing L is non-decreasing on (0,∞).
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Definition 2.7. A non-negative random variable X and its distribution are said to be regularly varying
with index α ≥ 0 if the right distribution tail F(x) is regularly varying with index −α.

Remark 2.8. According to Remark 2.2 and Definition 2.7, it is straightforward to observe that for any
regularly varying random variable with index α, the tail distribution can be expressed as

F(x) = x−αL(x),

where L denotes a slowly varying function.

In this section, we introduced only the theoretical background required for our analysis. The
extensive theory of regularly varying functions, including their properties, historical development,
and applications, is systematically treated in [30–32]. We now proceed to provide the mathematical
formulation of the stochastic process considered in this study.

2.2. Model assumptions and construction of the process X(t)

Let {ξn} and {ηn}, for n ≥ 1, be two independent sequences of random variables defined on a
probability space (Ω,F , P), where the variables in each sequence are independent and identically
distributed. Assume that ξn and ηn take only positive values, with their corresponding distribution
functions given by

Φ(t) = P(ξ1 ≤ t), t > 0, and F(x) = P(η1 ≤ x), x > 0.

We define renewal sequences {Tn} and {Yn} using the initial sequences {ξn} and {ηn} as follows:

Tn =

n∑
i=1

ξi, Yn =

n∑
i=1

ηi, n = 1, 2, . . . ; T0 = Y0 = 0.

Additionally, let us introduce a sequence of integer-valued random variables:

N0 = 0, Nn+1 = min
{
k ≥ Nn + 1 : S − (Yk − YNn) < s

}
, n = 0, 1, 2, . . . .

Following random variables, τn denotes the times at which the stock level falls below the control
threshold s for the nth time:

τn = TNn , n = 1, 2, . . . ; τ0 = 0.

Furthermore, we define the counting process ν(t) as:

ν(t) = max{n ≥ 0 : Tn ≤ t}.

Using these notations, we construct the following stochastic process:

X(t) = S − Yν(t) + YNk , for τk ≤ t < τk+1, k = 0, 1, 2, . . . .
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2.3. Precise formulas for the ergodic distribution of the process X(t) and its moments

The primary objective of this paper is to examine the asymptotic behavior of the system as the
parameter β = S − s in the ergodic distribution becomes sufficiently large. Additionally, we study the
nth-order moments (n = 1, 2, . . .) of ergodic distribution of the stochastic process X(t), particularly in
cases where the sequence of demands {ηn}, n ≥ 1, follows a regularly varying distribution with tail
index 1 < α < 2. In this specific case, regularly varying random variables are known to have infinite
variance.

Let us define the ergodic distribution of the process X(t) as QX(x) = limt→∞ P{X(t) ≤ x}. The
following proposition presents a result on the ergodicity of the process X(t), based on [33]:

Proposition 2.9 ( [33]). Suppose the initial sequences {ξn} and {ηn}, for n ≥ 1, satisfy the following
conditions:
(1) Eξ1 < ∞;
(2) The random variable η1 does not follow an arithmetic distribution.

Then, the process X(t) is ergodic, and its ergodic distribution function has the explicit form:

QX(x) = 1 −
U(S − x)
U(S − s)

, s ≤ x ≤ S , (2.2)

where U(x) =
∑∞

m=0 F∗mη (x) denotes the renewal function associated with the i.i.d. sequence {ηn}n≥1

(with the convention F∗0η (x) = 1{x ≥ 0}).
If the standardized form of the process X(t) is defined as Wβ(t) ≡ 1

β
(X(t)− s), then the exact formula

for the ergodic distribution of Wβ(t) is given as follows:

QWβ
(x) = 1 −

U(β(1 − x))
U(β)

, β ≡ S − s. (2.3)

By applying Proposition 2.9, nth-order moments (n = 1, 2, . . .) of the ergodic distribution of the
process X(t) is derived as follows (see [28]):

Proposition 2.10. If the conditions in Proposition 2.9 hold and nth-order moments of the ergodic
distribution of the process X̃(t) = X(t) − s are finite, then they can be expressed using the renewal
function U(x) as follows:

E(X̃n) =
nUn(β)
U(β)

, (2.4)

where Un(β) is defined as:

Un(β) = βn−1 ∗ U(β) ≡
∫ β

0
(β − t)n−1U(t)dt, n = 1, 2, . . . . (2.5)

As evident from the exact formulas of both the ergodic distribution and ergodic moments, the
renewal function generated by demand random variables is essential for this study. Altough for very
few distributions (e.g., exponential, Erlang) exact formulas for renewal function U(x) can be obtained,
in general cases, this is not easy. Therefore, when analyzing real-life problems that involve the renewal
function, utilizing the asymptotic expansion or approximations of the renewal function is a preferred
approach.
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3. Asymptotic analysis of the ergodic distribution and nth-order moments of the ergodic
distribution of the process X(t)

In this part of the study, our goal is to obtain improved approximate results for the ergodic
distribution of the process X(t) in the case where the demand random variables have a regularly varying
distribution with infinite variance, i.e., F(x) = P(η1 > x) = x−αL(x), for 1 < α < 2. To state our results,
let us first introduce the equilibrium distribution and excess distribution of a random variable η1 as
follows:

FI(x) = 1/m
∫ x

0
F(u)du, F I(x) = 1/m

∫ ∞

x
F(u)du. (3.1)

Note that
F(x) = P(η1 > x) = x−αL(x), 1 < α < 2, and m = E(η1). (3.2)

As previously noted, this study requires approximate expressions for the renewal function associated
with the demand random variables. The corresponding renewal process, denoted by N(z), is defined
as N(z) = in f

{
n ≥ 1 :

∑n
i=1 ηi > z

}
, where ηi represents the sequence of i.i.d. demand random

variables [15, p. 184]. The renewal function U(z) is the expected number of demands in the interval of
time [0, t], and is given by

U(t) = E [N(t)] =

∞∑
n=0

F∗n(t). (3.3)

There exist many asymptotic expansions and approximations in the literature for renewal functions
generated by random variables whose tail distributions are given as in (3.2) (see, for example, [29,34–
36]).

A notable refinement relevant to this study is presented in [1], where significantly sharper
approximations are obtained compared to earlier results for this class of problems. First of all, let
us define the real-valued functions G and g as follows:

g(y) = 2 fI(y) − ( fI(y) ∗ fI(y)) and G(x) =

∫ ∞

x
g(z)dz. (3.4)

Here fI(x) denotes the density function of the equilibrium distribution FI(x), which is given by fI(x) =

m−1F(x). The expression fI(y) ∗ fI(y) represents the two-fold (second-order) convolution of fI(y) with
itself. Moreover we define the constant

cα =
(3 − 2α)Γ(2 − α)2

Γ(4 − 2α)
, where Γ(·) is a well-known gamma function.

By setting

U(x) − m−1x − m−1
∫ x

0
FI(y) dy = m−1V(x). (3.5)

Doney [1] obtained the following approximations as x→ ∞:

V(x) ∼
|cα|xFI(x)2

|2α − 3|
, if α , 3/2, (3.6)

V(x)→
∫ ∞

0
G(y) dy, if α = 3/2 and

∫ ∞

0
FI(y)2 dy < ∞, (3.7)
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V(x) = o
(∫ x

0
FI(y)2 dy

)
, if α = 3/2 and

∫ ∞

0
FI(y)2 dy = ∞. (3.8)

Now we will present improved approximations for the ergodic distribution of the process X(t) while
the tail distribution of the demand random variables satisfies condition (3.2) by using Doney’s
approximations. To obtain these results, we will use the following lemmas:

Lemma 3.1. Let F(x) = x−3/2L(x) with L ∈ S V and m = E(η1) ∈ (0,∞), and set

Ls(x) :=
∫ x

1

L(y)2

y
dy.

Moreover assume that ∫ ∞

0
F I(y)2 dy = ∞,

for F I is defined by (3.1).
Then, as x→ ∞, ∫ x

0
F I(y)2 dy ∼

4
m2 Ls(x).

Proof. Write

F I(y) =
1
m

∫ ∞

y
u−3/2L(u) du =

1
m

y−1/2L(y)
∫ ∞

1
t−3/2 L(yt)

L(y)
dt (u = yt). (3.9)

We recall Potter’s theorem in the form of [30, Thm. 1.5.6(i)]: If L ∈ S V , then for every C > 1 and
every ε > 0, there exists x0 = x0(C, ε) such that

L(y)
L(x)

≤ C max
{(y

x

)ε
,
(y

x

)−ε}
, x ≥ x0, y ≥ x0. (3.10)

In our setting, we apply this statement with x = y and y = yt (so that y/x = t). Due to our change
of variables u = yt in (3.9), then t ∈ [1,∞), and we restrict to t ≥ 1, in which case max{tε, t−ε} = tε.
Moreover, interchanging x and y in (3.10) yields the corresponding lower estimate. Consequently, for
any fixed C > 1 and any fixed ε > 0, there exists y0 = y0(C, ε) such that for all y ≥ y0 and all t ≥ 1,

C−1t−ε ≤
L(yt)
L(y)

≤ Ctε. (3.11)

In (3.11), we choose C = 1 + δ with an arbitrary δ > 0 and restrict to ε ∈ (0, 1
2 ) to ensure that the

integrals
∫ ∞

1
t−3/2±ε dt are finite. So, we fix ε ∈

(
0, 1

2

)
and δ > 0, and then there exists y0 = y0(ε, δ) such

that for all y ≥ y0 and all t ≥ 1,

(1 + δ)−1t−ε ≤
L(yt)
L(y)

≤ (1 + δ) tε.

Note that here y0 may depend on (ε, δ); since we first fix (ε, δ) and then let y → ∞, the inequalities
hold for all sufficiently large y. Hence, for all y ≥ y0,

1
m

y−1/2L(y) (1 + δ)−1
∫ ∞

1
t−3/2−εdt ≤ F I(y) ≤

1
m

y−1/2L(y) (1 + δ)
∫ ∞

1
t−3/2+εdt. (3.12)
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Since ε < 1/2, the integrals appearing on the left- and right-hand sides of inequality (3.12) can be
calculated as follows: ∫ ∞

1
t−3/2−ε dt =

2
1 + 2ε

,

∫ ∞

1
t−3/2+ε dt =

2
1 − 2ε

.

Define

aε,δ :=
2

(1 + δ)(1 + 2ε)
, bε,δ :=

2(1 + δ)
1 − 2ε

.

Then, for y ≥ y0,
aε,δ
m

y−1/2L(y) ≤ F I(y) ≤
bε,δ
m

y−1/2L(y). (3.13)

Inequality (3.14) follows directly from (3.13) upon squaring both sides:

a2
ε,δ

m2

L(y)2

y
≤ F I(y)2 ≤

b2
ε,δ

m2

L(y)2

y
, y ≥ y0. (3.14)

Integrating (3.14) over [y0, x] gives

a2
ε,δ

m2

∫ x

y0

L(y)2

y
dy ≤

∫ x

0
F I(y)2 dy +

∫ y0

0
FI(y)2 dy ≤

b2
ε,δ

m2

∫ x

y0

L(y)2

y
dy.

Noting that
∫ y0

0
F I(y)2dy is a finite constant (independent of x), we obtain (3.15):

a2
ε,δ

m2

∫ x

y0

L(y)2

y
dy ≤

∫ x

0
F I(y)2 dy + O(1) ≤

b2
ε,δ

m2

∫ x

y0

L(y)2

y
dy. (3.15)

By the assumption
∫ ∞

0
F I(y)2 dy = ∞, we have

∫ x

0
F I(y)2 dy → ∞, hence the O(1) term is negligible.

In particular, the upper bound implies
∫ x

y0

L(y)2

y dy→ ∞, so

∫ x

y0

L(y)2

y
dy = Ls(x) + O(1).

Dividing the previous inequality by Ls(x) and letting x→ ∞ gives

a2
ε,δ

m2 ≤ lim inf
x→∞

∫ x

0
F I(y)2 dy

Ls(x)
≤ lim sup

x→∞

∫ x

0
F I(y)2 dy

Ls(x)
≤

b2
ε,δ

m2 .

Finally, since aε,δ → 2 and bε,δ → 2 as ε ↓ 0 and δ ↓ 0, we obtain∫ x

0
F I(y)2 dy ∼

4
m2 Ls(x), x→ ∞.

Finally, by applying Proposition 2.4, we have Ls ∈ S V and Ls(x)/L(x)2 → ∞. �
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Lemma 3.2. Let {ηi}, i ≥ 1, be a sequence of regularly varying random variables with exponent −α,
1 < α < 2, i.e.,

F(t) = P{η1 > t} = t−αL(t).

Let m = E(η1). Then, as x→ ∞, the following approximations are obtained for the renewal function
generated by the random variables {ηi}, i ≥ 1.

Case 1. α , 3/2:

U(x) ∼
x
m

+
1

m2

1
(α − 1)(2 − α)

x2−αL(x) +
1
m
|cα|x3−2αL2(x)

(α − 1)2|2α − 3|
. (3.16)

Case 2. α = 3/2 and
∫ ∞

0
FI(y)2 dy < ∞:

U(x) =
x
m

+
4

m2 x1/2L(x) + o
(
x1/2L(x)

)
, x→ ∞. (3.17)

Case 3. α = 3/2 and
∫ ∞

0
FI(y)2 dy = ∞:

U(x) =
x
m

+
4

m2 x1/2L(x) + o(Ls(x)). (3.18)

Note that in (3.18), Ls(x) is a slowly varying function such that

Ls(x) :=
∫ x

1

L(y)2

y
dy satisfies limx→∞

Ls(x)
L2(x)

= ∞. (3.19)

Proof. Case 1. α , 3/2: It is well known that (see, for example, [32])

F I(x) ∼
1
m

x1−α

(α − 1)
L(x) ∈ RV(1 − α) for 1 < α < 2 and α , 3/2. (3.20)

From here we obtain

V(x) ∼
|cα|x3−2αL2(x)

(α − 1)2|2α − 3|
. (3.21)

In this case, from Theorem 2.3(a), it is clear that

1
m

∫ x

0
FI(y)dy ∼

1
m2

1
(α − 1)(2 − α)

x2−αL(x). (3.22)

Substituting (3.21) and (3.22) into (3.5) yields the desired result.

Case 2. α = 3/2 and
∫ ∞

0
FI(y)2 dy < ∞: From Karamata’s theorem (since α = 3/2 > 1),

FI(x) ∼
2
m

x−1/2L(x),
∫ x

0
FI(y) dy ∼

4
m

x1/2L(x).

Following (3.5), we define

V(x) := m
(
U(x) −

x
m
−

1
m

∫ x

0
FI(y) dy

)
.
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By the definitions of g and G in (3.4), the remainder term V(x) can be represented as the renewal-
type convolution

V(x) =

∫ x

0
G(x − y) FI(y) dy. (3.23)

Under the assumptions α = 3
2 and ∫ ∞

0
FI(y)2 dy < ∞,

the equilibrium density fI is square-integrable, and therefore the convolution fI ∗ fI is well-defined and
integrable on (0,∞). In this case, Doney [1] showed that G(x) is integrable, i.e.,∫ ∞

0
G(y) dy < ∞.

Consequently, from (3.23) and dominated convergence,

V(x) =

∫ x

0
G(x − y) FI(y) dy −−−→

x→∞

∫ ∞

0
G(y) dy = C.

Combining (3.5) and the following asymptotic equivalences:

FI(x) ∼
2
m

x−1/2L(x),
∫ x

0
FI(y) dy ∼

4
m

x1/2L(x),

we obtain

U(x) =
x
m

+
1
m

∫ x

0
FI(y) dy +

1
m

V(x) =
x
m

+
4

m2 x1/2L(x) +
C
m

+ o(1), x→ ∞.

For any slowly varying function L, we have tαL(t) → ∞ for every α > 0 (and tαL(t) → 0 for every
α < 0); see [37, Lemma 2.1 (SV5)]. Hence x1/2L(x)→ ∞. Then the constant term C

m is asymptotically
negligible, which gives:

U(x) =
x
m

+
4

m2 x1/2L(x) + o
(
x1/2L(x)

)
.

This completes the derivation.

Case 3. α = 3/2 and
∫ ∞

0
FI(y)2dy = ∞: Let F(x) = x−3/2L(x) with L ∈ S V and E(η1) = m ∈ (0,∞).

By the definition of F I and Karamata’s theorem (see Theorem 2.3(b)),

F I(x) ∼
2
m

x−1/2L(x),

so that F I ∈ RV−1/2. Therefore, by Karamata’s theorem (see Theorem 2.3(a)),

1
m

∫ x

0
F I(y) dy ∼

2
m

x F I(x) ∼
4

m2 x1/2L(x). (3.24)
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For the critical index α = 3/2 and under
∫ ∞

0
F I(y)2dy = ∞, Doney’s second-order estimate (see

Eq (3.8)) gives

V(x) = o
(∫ x

0
F I(y)2 dy

)
.

Moreover, by Lemma 3.1, ∫ x

0
F I(y)2 dy ∼

4
m2 Ls(x),

and therefore
V(x) = o

(
Ls(x)

)
, (3.25)

where Ls is the slowly varying function defined in Lemma 3.1. Inserting (3.24) and (3.25) into (3.5)
yields

U(x) =
x
m

+
4

m2 x1/2L(x) + o
(
Ls(x)

)
, x→ ∞,

which is the desired result. �

Building upon Lemma 3.2, Theorem 3.3 provides new approximations for the ergodic distribution
of the process X(t). For the noncritical regime α , 3

2 , we obtain an explicit two-term approximation
together with a rigorously controlled remainder term. This refines the available asymptotic descriptions
by making the correction term and the error order explicit. Moreover, in the critical case α = 3

2 , we
derive a two-term expansion

QWβ
(x) = x + (correction term) + o(·),

whose leading term x is consistent with the standard scaling limit in classical (s, S )-type models (see,
for example, [24]), while the order of the o(·) remainder is inherited from Doney’s [1] second–order
renewal estimate in the critical regime.

Theorem 3.3. Let the conditions of Proposition 2.9 be satisfied. Assume further that the distribution
of η1 is regularly varying as specified in Lemma 3.2. Under these conditions, for each x ∈ (0, 1),
approximate expressions for the ergodic distribution of the process QWβ

(x) are derived below as β =

S − s→ ∞.

Case 1. 1 < α < 2; α , 3/2:

QWβ
(x) ∼ x + c21

{
(1 − x) − (1 − x)2−α

}
β1−αL(β)

+
{
c2

21

[
(x − 1) − (1 − x)2−2α

]
− c3x + c31

[
1 − (1 − x)3−2α

]}
β2−2αL2(β). (3.26)

For

c1 =
1
m
, c2 =

1
m2(α − 1)(2 − α)

,

c21 =
c2

c1
=

1
m(α − 1)(2 − α)

, cα =
(3 − 2α)Γ(2 − α)2

Γ(4 − 2α)
, Γ(·) denotes the gamma function,

c3 =
|cα|

m|2α − 3|(α − 1)2 =
Γ(2 − α)2

mΓ(4 − 2α)(α − 1)2 , c31 =
c3

c1
=

Γ(2 − α)2

Γ(4 − 2α)(α − 1)2 , m = E(η1).

(3.27)
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Case 2. α = 3/2 and
∫ ∞

0
FI(y)2 dy < ∞:

QWβ
(x) = x +

4
m

(
(1 − x) − (1 − x)1/2

)
β−1/2L(β) + o

(
β−1/2L(β)

)
. (3.28)

Case 3. α = 3/2 and
∫ ∞

0
FI(y)2 dy = ∞:

QWβ
(x) = x +

[
4
m

(
(1 − x) − (1 − x)1/2

)]
β−1/2L(β) + o

(
β−1Ls(β)

)
. (3.29)

Note that in (3.29), Ls(x) is a slowly varying function defined by (3.19).

Proof. Case 1. First of all, since L(x) is slowly varying, L(cx) ∼ L(x) for any constant c. Hence,
L(β(1 − x)) ∼ L(β) for each x ∈ (0, 1) and β → ∞. On the other hand, L2(x) is slowly varying for any
slowly varying L(x). Hence L2(β(1 − x)) ∼ L2(β) for each x ∈ (0, 1) as β→ ∞.

From (3.16), we have

(U(β))−1 ∼
m
β

{
1 − c21β

1−αL(β) + (c2
21 − c3)β2−2αL2(β)

}
, (3.30)

U(β(1 − x)) ∼ {c1(1 − x)} β + {c2(1 − x)2−α}β2−αL(β) + {c3(1 − x)3−2α}β3−2αL2(β). (3.31)

Substituting (3.30) and (3.31) on the right-hand side of (2.3), we obtain the following approximation
for QWβ

(x) by using a Taylor series expansion:

QWβ
(x) = 1 −

U(β(1 − x))
U(β)

∼

{
x +

[
c2

c1
[1 − (1 − x)2−α]

]
β1−αL(β) +

[
c3

c1
[1 − (1 − x)3−2α]

]
β2−2αL2(β)

}
×

{
1 − c21β

1−αL(β) + (c2
21 − c3)β2−2αL2(β)

}
= x + c21

{
(1 − x) − (1 − x)2−α

}
β1−αL(β)

+
{
c2

21

[
(x − 1) − (1 − x)2−2α

]
− c3x + c31

[
1 − (1 − x)3−2α

]}
β2−2αL2(β).

Case 2. From (3.17), we have

(U(β))−1 ∼
m
β

{
1 −

(
4
m

)
β−1/2L(β) + o

(
β−1/2L(β)

)}
, (3.32)

U(β(1 − x)) ∼
(1 − x)

m
β +

{
4

m2 (1 − x)1/2
}
β1/2L(β) + o(β1/2L(β)). (3.33)

By substituting of (3.32) and (3.33) on the right-hand side of (2.3), the desired result holds using similar
techniques as in Case 1.

Case 3. From (3.18), we have

(U(β))−1 ∼
m
β

{
1 −

4
m
β−1/2L(β) + o

(
β−1Ls(β)

)}
, (3.34)
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such that Ls(x) is a slowly varying function satisfying the conditions of Lemma 3.1 and

limx→∞
Ls(x)
L2(x)

= ∞.

Moreover,

U(β(1 − x)) ∼
(1 − x)

m
β +

{
4

m2 (1 − x)1/2
}
β1/2L(β) + o(Ls(β)). (3.35)

Substitution of (3.34) and (3.35) on the right-hand side of (2.3) allows the desired result to hold. �

With Theorem 3.3, we derived an approximation for the ergodic distribution of the process Wβ(t)
under certain specified conditions. A second key objective of this work is to establish approximate
results for the moments of the ergodic distribution of the process X(t), denoted by E(X̃n) for n ≥ 1.
The exact expressions for these moments are presented with (2.4) in Section 2.3. Prior to introducing
the approximations for the ergodic moments of order n, we first present the following lemmas. In
Lemmas 3.4–3.6, we study the asymptotic behavior of Un(β) case by case.

Lemma 3.4. Assume that the conditions of Proposition 2.9 hold. Suppose further that the random
variables (ηi) generating the renewal function U satisfy the assumptions of Lemma 3.2 (Case 1). Let
Un(β) be defined by (2.5). Then, as β→ ∞,

Un(β) ∼
βn+1

m
B(2, n) + c2B(n, 3 − α)βn+2−αL(β) + c3B(n, 4 − 2α)βn+3−2αL1(β), (3.36)

where

c2 =
1

m2(α − 1)(2 − α)
, c3 =

|cα|
m|2α − 3|(α − 1)2 =

Γ(2 − α)2

mΓ(4 − 2α)(α − 1)2 ,

B(·, ·) is the beta function, Γ(·) denotes the gamma function, and L1(β) = L(β)2.

Proof. Taking (3.16) into account, we have

Un(β) =

∫ β

0
(β − t)n−1U(t) dt

∼

∫ β

0
(β − t)n−1

{ t
m

+ c2 t2−αL(t) + c3 t3−2αL1(t)
}

dt =: I11(β) + I12(β) + I13(β).

For I11(β),

I11(β) =
1
m

∫ β

0
(β − t)n−1t dt =

1
m
βn+1

∫ 1

0
(1 − u)n−1u du =

1
m
βn+1B(2, n). (3.37)

For I12(β), by Theorem 2.6,

I12(β) = c2

∫ β

0
(β − t)n−1t2−αL(t) dt

= c2 β
n+2−α

∫ 1

0
(1 − u)n−1u2−αL(βu) du

∼ c2 β
n+2−αL(β) B(n, 3 − α). (3.38)
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Since L1 = L2 ∈ S V , Theorem 2.6 also yields

I13(β) = c3

∫ β

0
(β − t)n−1t3−2αL1(t) dt

= c3 β
n+3−2α

∫ 1

0
(1 − u)n−1u3−2αL1(βu) du

∼ c3 β
n+3−2αL1(β) B(n, 4 − 2α). (3.39)

Combining (3.37)–(3.39) gives (3.36). �

Lemma 3.5. Assume that the conditions of Proposition 2.9 hold. Suppose further that (ηi) satisfies the
assumptions of Lemma 3.2 (Case 2). Let Un(β) be defined by (2.5). Then, as β→ ∞,

Un(β) =
1
m

B(2, n) βn+1 +
4

m2 B
(
n,

3
2

)
βn+ 1

2 L(β) + o
(
βn+ 1

2 L(β)
)
. (3.40)

Proof. Taking (3.17) into account, we derive

Un(β) =

∫ β

0
(β − t)n−1U(t) dt

=

∫ β

0
(β − t)n−1

{
t
m

+
4

m2 t1/2L(t) + H(t)
}

dt

= I21(β) + I22(β) + I23(β),

where H(t) = o
(
t1/2L(t)

)
. The first two terms are computed exactly as in (3.37) and (3.38), yielding

I21(β) =

∫ β

0
(β − t)n−1 t

m
dt =

1
m
βn+1B(2, n)

and

I22(β) =
4

m2

∫ β

0
(β − t)n−1t1/2L(t)dt =

4
m2 B

(
n,

3
2

)
βn+ 1

2 L(β).

It remains to show that I23(β) = o
(
βn+ 1

2 L(β)
)
, where

I23(β) =

∫ β

0
(β − t)n−1H(t) dt

and H(t) = o
(
t1/2L(t)

)
as t → ∞. Fix ε > 0. Then there exists T > 0 such that

|H(t)| ≤ ε t1/2L(t), t ≥ T.

Split I23(β) = J1(β) + J2(β) with

J1(β) :=
∫ T

0
(β − t)n−1H(t) dt, J2(β) :=

∫ β

T
(β − t)n−1H(t) dt.
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Since T is fixed and H is locally integrable, we have J1(β) = O(βn−1), hence J1(β) = o
(
βn+ 1

2 L(β)
)
.

Moreover, for β > T ,

|J2(β)| ≤ ε
∫ β

T
(β − t)n−1t1/2L(t) dt

= ε βn+ 1
2

∫ 1

T/β
(1 − u)n−1u1/2L(βu) du

∼ ε βn+ 1
2 L(β)

∫ 1

0
(1 − u)n−1u1/2 du = ε B

(
n,

3
2

)
βn+ 1

2 L(β),

by Theorem 2.6. Since ε is arbitrary, it follows that I23(β) = o
(
βn+ 1

2 L(β)
)
. Combining the asymptotics

of I21–I23 yields (3.40). �

Lemma 3.6. Assume that the conditions of Proposition 2.9 hold. Suppose further that (ηi) satisfies the
assumptions of Lemma 3.2 (Case 3). Let Un(β) be defined by (2.5). Then, as β→ ∞,

Un(β) =
1
m

B(2, n)βn+1 +
4

m2 B
(
n,

3
2

)
βn+ 1

2 L(β) + o (βnLs(β)) , (3.41)

where Ls ∈ S V is as in Lemma 3.1 and satisfies

lim
β→∞

Ls(β)
L(β)2 = ∞.

Proof. Taking (3.18) into account, write

Un(β) =

∫ β

0
(β − t)n−1U(t) dt

=

∫ β

0
(β − t)n−1

{
t
m

+
4

m2 t1/2L(t) + G(t)
}

dt

= I31(β) + I32(β) + I33(β),

where G(t) = o(Ls(t)) as t → ∞.
The evaluations of I31(β) and I32(β) are identical to those of I21(β) and I22(β) in the proof of

Lemma 3.5 (with the same change of variables), hence

I31(β) =
1
m
βn+1B(2, n), I32(β) ∼

4
m2 B

(
n,

3
2

)
βn+ 1

2 L(β).

It remains to show that

I33(β) =

∫ β

0
(β − t)n−1G(t) dt = o(βnLs(β)) .

Fix ε > 0. Since G(t) = o(Ls(t)), there exists T > 0 such that

|G(t)| ≤ ε Ls(t), t ≥ T.
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Split I33(β) = K1(β) + K2(β) with

K1(β) :=
∫ T

0
(β − t)n−1G(t) dt, K2(β) :=

∫ β

T
(β − t)n−1G(t) dt.

Since T is fixed, K1(β) = O(βn−1) = o(βnLs(β)). Moreover, for β > T ,

|K2(β)| ≤ ε
∫ β

T
(β − t)n−1Ls(t) dt

= ε βn
∫ 1

T/β
(1 − u)n−1Ls(βu) du ∼ ε βnLs(β)

∫ 1

0
(1 − u)n−1 du

= ε B(1, n) βnLs(β),

where we used Theorem 2.6 (with Ls ∈ S V). Since ε is arbitrary, I33(β) = o(βnLs(β)). Combining
I31–I33 yields (3.41). �

Theorem 3.7. Let the conditions of Proposition 2.9 be satisfied. Assume further that the distribution
of the demand random variable η1 is as specified in Lemma 3.2. Under these conditions, approximate
expressions for the moments of ergodic distribution of the process QWβ

(x) are derived below as β =

S − s→ ∞.

Case 1. 1 < α < 2, α , 3/2,

E
(
X̃n

)
∼ a1β

n + (a2 − a1a4)βn+1−αL(β) + (a3 − a2a4 − a5a1 + a2
4a1)βn+2−2αL2(β), (3.42)

for

a1 =
1

n + 1
, a2 =

n!(2 − α)!
(α − 1)(2 − α)(n + 2 − α)!

, a3 =
nB(n, 4 − 2α)Γ(2 − α)2

Γ(4 − 2α)(α − 1)2 ,

a4 =
1

(α − 1)(2 − α)
, a5 =

Γ(2 − α)2

Γ(4 − α)
; Γ(·) is the gamma function, n = 1, 2, 3, .... (3.43)

Case 2. α = 3/2 and
∫ ∞

0
FI(y)2 dy < ∞,

E
(
X̃n

)
∼ a1β

n + b1β
n− 1

2 L(β) + o
(
βn− 1

2 L(β)
)
, (3.44)

for

a1 =
1

n + 1
, b1 =

(
4n
m

) [
B

(
n,

3
2

)
− B (n, 2)

]
; B(·, ·) is the beta function, m1 = E(η1).

Case 3. α = 3/2 and
∫ ∞

0
FI(y)2 dy = ∞,

E
(
X̃n

)
∼ a1β

n + b1β
n− 1

2 L(β) + o
(
βn−1Ls(β)

)
, (3.45)

for

a1 =
1

n + 1
, b1 =

(
4n
m

) [
B

(
n,

3
2

)
− B (n, 2)

]
; B(·, ·) is the beta function, m1 = E(η1).
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Note that in (3.45), Ls(x) is a slowly varying function that satisfies the conditions of Lemma 3.1 such
that

limx→∞
Ls(x)
L2(x)

= ∞.

Proof. By (2.4),

E(X̃n) =
n Un(β)
U(β)

.

Case 1 follows from Lemma 3.4 and (3.30). Case 2 follows from Lemma 3.5 and (3.32). Case 3
follows from Lemma 3.6 and (3.34). �

4. Conclusions

In this study, we have carried out a detailed asymptotic analysis of the ergodic distribution and its
moments for a semi-Markovian renewal–reward process arising from an (s, S )-type inventory system
with heavy-tailed, regularly varying demand. The emphasis has been on identifying the leading terms
and the correct error orders uniformly over the range 1 < α < 2, with particular attention to the
transition at the critical index α = 3

2 .
Unlike our earlier work, which relied on Geluk’s classical renewal theorem [29], the present paper

is based on Doney’s refined renewal expansion [1]. Geluk’s approach is well suited for obtaining
leading-order asymptotics and bounds, but it typically leaves the remainder implicit. By contrast,
Doney’s framework yields a sharper second-order description in the heavy-tailed regime and, crucially
for our purposes, provides the appropriate error scale in the critical setting. This allows us to write the
approximations in a form that is both explicit and directly usable in the inventory model.

A main contribution of the paper is a uniform treatment of the non-critical and critical regimes
within a single framework. When α , 3

2 , we obtain two-term expansions with explicit constants,
making transparent how the tail index controls the rate at which the normalized ergodic quantities
approach their limits. When α = 3

2 , we recover the correct second term and distinguish the two sub-
regimes determined by

∫ ∞
0

F I(y)2 dy, which governs the order of the remainder. In this sense, the
critical case is handled at the level of precision required for performance evaluation, rather than only
at the level of first-order limits.

Overall, the results provide a more explicit description of the asymptotic structure of the ergodic
distribution and its moments, with remainder terms stated on the correct scale. From a modeling
viewpoint, this is most relevant precisely in settings where heavy tails drive the long-run behavior,
such as inventory systems with sporadic large demands and related renewal–reward models with slowly
decaying fluctuations.

Possible extensions include treating more general interference-of-chance mechanisms, allowing
dependence or long-range effects in the demand sequence, and developing analogous expansions for
multi-item or networked inventory systems where several renewal–reward components interact.
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