Let $ r\in \mathbb{C}, $ $ s\in \lbrack -1, 0) $, $ 0\leq \alpha < 1. $ Then, $ \mathcal{Q}\left[r, s, \alpha \right] $ stands for the set of analytic functions $ q $ that is within the open unit disk $ E $, with $ q\left(0\right) = 1, $ and satisfies the explicit representation
$ \begin{equation*} q\left( \zeta \right) = \frac{1+\left( \left( 1-\alpha \right) r+\alpha s\right) \chi \left( \zeta \right) }{1+s\chi \left( \zeta \right) }, \end{equation*} $
where $ \chi \left(0\right) = 0 $ and $ \left \vert \chi \left(\zeta \right)\right \vert < 1. $ In this article, we find the regions of variability $ W_{\lambda }\left(\zeta _{0}, r, s, \alpha \right) $ for $ \int \limits_{0}^{z_{0}}q\left(\rho \right) d\rho \ $when $ q $ ranges over the class $ \mathcal{Q}_{\lambda }\left[r, s, \alpha \right] $ defined as
$ \begin{equation*} \mathcal{Q}_{\lambda }\left[ r, s, \alpha \right] = \left \{ q\in \mathcal{Q} \left[ r, s, \alpha \right] :q^{\prime }\left( 0\right) = \left( \left( 1-\alpha \right) \left( r-s\right) \right) \lambda \right \} \end{equation*} $
for any fixed $ \zeta _{0}\in E $ and $ \lambda \in \overline{E} $. As a corollary, the region of variability appears for the alternate sets of parameters as well.
Citation: Bilal Khan, Fairouz Tchier, Manuela Oliveira. Regions of variability for generalized Janowski functions[J]. AIMS Mathematics, 2026, 11(2): 3499-3511. doi: 10.3934/math.2026142
Let $ r\in \mathbb{C}, $ $ s\in \lbrack -1, 0) $, $ 0\leq \alpha < 1. $ Then, $ \mathcal{Q}\left[r, s, \alpha \right] $ stands for the set of analytic functions $ q $ that is within the open unit disk $ E $, with $ q\left(0\right) = 1, $ and satisfies the explicit representation
$ \begin{equation*} q\left( \zeta \right) = \frac{1+\left( \left( 1-\alpha \right) r+\alpha s\right) \chi \left( \zeta \right) }{1+s\chi \left( \zeta \right) }, \end{equation*} $
where $ \chi \left(0\right) = 0 $ and $ \left \vert \chi \left(\zeta \right)\right \vert < 1. $ In this article, we find the regions of variability $ W_{\lambda }\left(\zeta _{0}, r, s, \alpha \right) $ for $ \int \limits_{0}^{z_{0}}q\left(\rho \right) d\rho \ $when $ q $ ranges over the class $ \mathcal{Q}_{\lambda }\left[r, s, \alpha \right] $ defined as
$ \begin{equation*} \mathcal{Q}_{\lambda }\left[ r, s, \alpha \right] = \left \{ q\in \mathcal{Q} \left[ r, s, \alpha \right] :q^{\prime }\left( 0\right) = \left( \left( 1-\alpha \right) \left( r-s\right) \right) \lambda \right \} \end{equation*} $
for any fixed $ \zeta _{0}\in E $ and $ \lambda \in \overline{E} $. As a corollary, the region of variability appears for the alternate sets of parameters as well.
| [1] | S. Dineen, The Schwarz lemma, Oxford: Clarendon Press, 1989. |
| [2] |
H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai Math. J., 28 (2005), 452–462. https://doi.org/10.2996/kmj/1123767023 doi: 10.2996/kmj/1123767023
|
| [3] |
H. Yanagihara, Regions of variability for convex functions, Math. Nachr., 279 (2006), 1723–1730. https://doi.org/10.1002/mana.200310449 doi: 10.1002/mana.200310449
|
| [4] |
S. Ponnusamy, A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl., 332 (2007), 1323–1334. https://doi.org/10.1016/j.jmaa.2006.11.019 doi: 10.1016/j.jmaa.2006.11.019
|
| [5] | S. Ponnusamy, A. Vasudevarao, Region of variability for functions with positive real part, Ann. Pol. Math., 99 (2010), 225–245. |
| [6] |
S. Ponnusamy, A. Vasudevarao, M. Vuorinen, Region of variability for certain classes of univalent functions satisfying differential inequalities, Complex Var. Elliptic, 54 (2009), 899–922. https://doi.org/10.1080/17476930802657616 doi: 10.1080/17476930802657616
|
| [7] |
S. Ponnusamy, A. Vasudevarao, H. Yanagihara, Region of variability for close-to-convex functions, Complex Var. Elliptic, 53 (2008), 709–716. https://doi.org/10.1080/17476930801996346 doi: 10.1080/17476930801996346
|
| [8] | S. Ponnusamy, A. Vasudevarao, H. Yanagihara, Region of variability of univalent functions $\phi(\zeta)$ for which $\zeta\phi^{\prime}(\zeta)$ is spirallike, Houston J. Math., 34 (2008), 1037–1048. |
| [9] |
W. Ul Haq, Variability regions for Janowski convex functions, Complex Var. Elliptic, 59 (2014), 355–361. https://doi.org/10.1080/17476933.2012.725164 doi: 10.1080/17476933.2012.725164
|
| [10] |
M. Raza, W. Ul Haq, J-L. Liu, S. Noreen, Regions of variability for a subclass of analytic functions, AIMS Mathematics, 5 (2020), 3365–3377. https://doi.org/10.3934/math.2020217 doi: 10.3934/math.2020217
|
| [11] |
S. Z. H. Bukhari, A. K. Wanas, M. Abdalla, S. Zafar, Region of variability for Bazilevic functions, AIMS Mathematics, 8 (2023), 25511–25527. https://doi.org/10.3934/math.20231302 doi: 10.3934/math.20231302
|
| [12] |
B. Khan, W. F. Alfwzan, K. M. Abualnaja, M. Oliveira, Geometric perspectives on the variability of spiralike functions with respect to a boundary point in relation to Janowski functions, AIMS Mathematics, 10 (2025), 13006–13024. https://doi.org/10.3934/math.2025585 doi: 10.3934/math.2025585
|
| [13] |
M. Raza, W. Ul Haq, S. Noreen, Regions of variability for Janowski functions, Miskolc Math. Notes, 16 (2015), 1117–1127. https://doi.org/10.18514/mmn.2015.1344 doi: 10.18514/mmn.2015.1344
|