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that is within the open unit disk E, with q (0) = 1, and satisfies the explicit representation

q (ζ) =
1 + ((1 − α) r + αs) χ (ζ)

1 + sχ (ζ)
,

where χ (0) = 0 and |χ (ζ)| < 1. In this article, we find the regions of variability Wλ (ζ0, r, s, α) for
z0∫
0

q (ρ) dρ when q ranges over the class Qλ [r, s, α] defined as

Qλ [r, s, α] = {q ∈ Q [r, s, α] : q′ (0) = ((1 − α) (r − s)) λ}

for any fixed ζ0 ∈ E and λ ∈ E. As a corollary, the region of variability appears for the alternate sets of
parameters as well.
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1. Introduction

LetA be the set of analytic functions (AFs) inD = {ζ ∈ C : |ζ | < 1} that are expressed as

ϕ (ζ) = ζ +
∞∑

n=2

anζ
n. (1.1)

Consider Ω to be a topological vector space equipped with the topology defined by uniform
convergence over compact subsets of the set D. Let us define the class B to include all functions
χ that are analytic onD, satisfy the condition |χ(ζ)| < 1 for every ζ ∈ D, and are normalized such that
χ(0) = 0.

It can be said that an AFs ϕ is subordinate to another function g, represented as ϕ ≺ g, if there exists
χ ∈ B, for which the identity

ϕ(ζ) = g(χ(ζ))

holds for all ζ ∈ D. In the special case where g is univalent (i.e., one-to-one) onD, this subordination
implies that ϕ(0) = g(0), and that the image of ϕ is contained within that of g, meaning ϕ(D) ⊂ g(D).

Now, let us introduce the family Q[r, s], containing functions q that are analytic inD, fulfill q(0) =
1, and can be expressed in the form

q (ζ) =
1 + rχ(ζ)
1 + sχ(ζ)

, χ ∈ B, ζ ∈ D, (1.2)

where r ∈ C, s ∈ [−1, 0) with r , s. Note that Q[1,−1] = Q.
For arbitrarily fixed numbers r ∈ C, s ∈ [−1, 0) with r , s and 0 ≤ α < 1, let Q [r, s, α] be the class

of AFs q such that q (0) = 1, and q ∈ Q [r, s, α] if and only if

q (ζ) =
1 + ((1 − α) r + αs) χ(ζ)

1 + sχ(ζ)
, ζ ∈ D. (1.3)

Note that Q[1,−1, 0] = Q. Let q ∈ Q [r, s, α] , then, applying the Herglotz representation, there exists a
unique positive unit measure µ ∈ (−π, π], where

q (ζ) =
∫ π

−π

1 + ((1 − α) r + αs) eitζ

1 + seitζ
dµ(t), ζ ∈ D. (1.4)

As evident from (1.3) that

χq (ζ) =
q (ζ) − 1

((1 − α) r + αs) − sq (ζ)
, ζ ∈ D, (1.5)

conversely, we have
q′ (0) = (((1 − α) r + αs) − s) χ′q (0) . (1.6)

Let q ∈ Q [r, s, α] . Then, call on the Schwarz lemma, that is,
∣∣∣χ′q (0)

∣∣∣ ≤ 1 (see [1]). This yields

q′ (0) = (1 − α) (r − s) λ
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for some λ ∈ D. By using ( 1.5), one can compute

χ′′q (0)

2
=

q′′ (0)
2 (1 − α) (r − s)

+ sλ2.

Now, if we let

g (ζ) =


χq(ζ)
ζ −λ

1−λ
χq(ζ)
ζ

, 1 > |λ| ,

0 |λ| = 1,

consequently

g
′

(0) =

 1
1−|λ|2

(
χq(ζ)
ζ

)′
|ζ=0=

1
1−|λ|2

χ′′q (ζ)
2 , |λ| < 1,

0, |λ| = 1.

The classical Schwarz lemma tells us that for any analytic map g that dominates the unit disk and
fixes the origin, we must have |g (ζ)| ≤ |ζ | and |g′ (0)| ≤ 1. The boundary cases are realized when g
takes the form g (ζ) = eiαζ for some α ∈ R. The inequality |g′ (0)| ≤ 1 guarantees the existence of a
point a in the open unit disk such that g′ (0) = a. Thus, we have

q′′ (0) = 2 (1 − α) (r − s)
[(

1 − |λ|2
)

a − sλ2
]
.

Hence, for any λ in D and any ζ0 in D, we obtain Wλ (ζ0, r, s, α), expressed as
∫ ζ0

0
q (δ) dδ, when q

varies within the family Qλ [r, s, α], characterized by

Qλ [r, s, α] = {q ∈ Q [r, s, α] : q′ (0) = (((1 − α) r + αs) − s) λ} ,

and

Wλ (ζ0, r, s, α) =
{∫ ζ0

0
q (δ) dδ, q ∈ Qλ [r, s, α]

}
.

The area of complex analysis, and specifically that of univalent functions, has been a popular
research area in the literature. A principal target of this area is the fundamentally remarkable result,
the Schwarz lemma ( [1], 1989), and from that point, many contributions have been made to study the
properties of some classes of univalent functions. Most relevant to our work, Yanagihara [2,3] studied
regions of variation for functions that have bounded variation in 2005 and for convex functions in 2006.
Then, in many avenues, Ponnusamy and Vasudevarao [4,5] shared results on the region of variation of
subclasses of univalent functions, for functions with a positive real part, and other classes of univalent
functions [6]. In the year 2008, Ponnusamy, along with other collaborators [7], also studied the region
of variation for close-to-convex functions. Still in the year 2008, Ponnusamy et al. [8] investigated
region of variation of univalent functions φ (ζ) , where ζφ

′ (ζ) is spirallike, while Ul-Haq [9] studied
the regions of variability for Janowski convex functions in 2014. In 2020, Raza et al. [10] examined
the region of variability for a subclass of analytic functions, and Bukhari et al. examined the region of
variability of Bazilevic functions in [11]. In 2025, Khan et al. [12] published a comprehensive study of
geometric perspectives on the variability of spirallike functions in relation to Janowski functions with
respect to a boundary point. Collectively, their works contribute to an understanding of the properties
and behavior of various classes of univalent functions, and their connections between the theory of
functions and geometric properties.

AIMS Mathematics Volume 11, Issue 2, 3499–3511.



3502

While the aforementioned studies have significantly advanced our understanding of variability
regions for various function classes, most investigations have focused on specific subfamilies with
fixed geometric domains. Of particular relevance to our work, Ul-Haq [9] studied the regions
of variability for Janowski convex functions in 2014, and in 2015, Raza et al. [13] investigated
variability regions Vλ(ζ0) for the integral functional

∫ ζ0
0

p(ρ) dρ when p ranges over the class Pλ[A, B]
of Janowski functions. However, their study considered only the case where boundary parameters
are fixed, without exploring the effect of convex combinations of these parameters on the resulting
variability regions. The present paper addresses this gap by introducing and investigating the class
Qλ[r, s, α] of generalized Janowski functions, where the additional parameter α ∈ [0, 1) provides
a convex combination structure that interpolates between different geometric configurations. Our
main contribution lies in determining the complete regions of variability Wλ(ζ0, r, s, α) for the integral
functional

∫ z0

0
q(ρ) dρ when q ranges over Qλ[r, s, α]. This work directly extends and generalizes the

results of Raza et al. [13] in the following significant ways: (i) Setting α = 0 in our main theorems
recovers their variability regions as a special case, thereby validating our approach while demonstrating
that their results are embedded within our broader framework, and (ii) the introduction of the parameter
α enables a continuous transition between boundary behaviors, yielding new geometric insights into
how variability regions evolve as functions move between different Janowski-type domains. Moreover,
our explicit characterization implies how the geometry of these regions depends smoothly on α, a
case not studied in previous work. The explicit characterization of these regions not only enriches
the geometric function theory but also provides a flexible tool for applications where intermediate
geometric properties are of interest. The remainder of this paper is organized as follows: Section
2 presents preliminary results and basic properties of Wλ (ζ0, r, s, α). Section 3 contains our main
theorems on variability regions with detailed proofs, and in Section 4, we conclude our work.

2. Basic properties of Wλ (ζ0, r, s, α)

Proposition 2.1. (i) The set Wλ (ζ0, r, s, α) forms a compact subset of the complex plane C.
(ii) The set Wλ (ζ0, r, s, α) forms a convex set of the complex plane C.
(iii) If |λ| = 1 or ζ0 = 0, then,

Wλ (ζ0, r, s, α) =
{
ζ0 +

(1 − α) (r − s)
s

(
ζ0 −

1
sλ

log(1 + sλζ0)
)}
,

and if |λ| < 1 and ζ0 , 0, then,{
ζ0 +

(1 − α) (r − s)
s

(
ζ0 −

1
sλ

log(1 + sλζ0)
)}

is the interior point of Wλ (ζ0, r, s, α) .

Proof. (i) As Qλ[r, s, α] is a compact subset of C, thus, Wλ (ζ0, r, s, α) is also compact.
(ii) Let q1, q2 ∈ Qλ[r, s, α]. Then,

q (ζ) = (1 − t) q1 (ζ) + tq2 (ζ) , t ∈ [0, 1]

is also in Qλ[r, s, α]. Therefore, Wλ (ζ0, r, s, α) is convex.
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(iii) Since if |λ| = |χ′ϕ(0)| = 1, then, by use of The Shwarz lemma, we obtain χϕ(ζ) = λζ, which
yields

q(ζ) =
1 + λ ((1 − α) r + αs) ζ

1 + λsζ
.

This implies that

q (ζ) = 1 +
(
(1 − α) (r − s)

s

) {
1 −

1
1 + sλζ

}
.

Therefore,

Wλ (ζ0, r, s, α) =

ζ0∫
0

q (δ) dδ =
{
ζ0 +

(1 − α) (r − s)
s

(
ζ0 −

1
sλ

log(1 + sλζ0)
)}
.

This also trivially holds true when ζ0 = 0. For λ ∈ D and α ∈ D, set

δ(ζ, λ) =
ζ + λ

1 + λζ
,

ζ∫
0

Ga,λ (σ) dσ =

ζ∫
0

1 + ((1 − α) r + αs)σδ(aσ, λ)
1 + sσδ(aσ, λ)

dσ, ζ ∈ D. (2.1)

Then,
ζ∫

0

Ga,λ (σ) dσ is in Qλ[r, s, α],

and
χϕ(ζ) = ζδ(aζ, λ).

For fixed λ ∈ D and ζ0 ∈ D\{0}, the function

D ∋ a 7→

ζ0∫
0

Ga,λ (σ) dσ =

ζ0∫
0

1 + (λa + ((1 − α) r + αs) λ)σ + ((1 − α) r + αs) aσ2

1 + (λa + sλ)σ + saσ2
dσ

is analytic and non-constant on a ∈ D, implying it’s an open mapping. Hence,

ζ0∫
0

G0,λ (σ) dσ =
{
ζ0 +

(1 − α) (r − s)
s

(
ζ0 −

1
sλ

log(1 + sλζ0)
)}

is an element of the interior of
ζ0∫

0

Ga,λ (σ) dσ : a ∈ D

 ⊂ Wλ[ζ0, r, s, α].

□

Remark 2.2. Proposition 2.1 is sufficient to find Wλ[ζ0, r, s, α] for 0 ≤ λ < 1 and ζ0 ∈ D\{0}.
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3. Main results

In this part, we present and demonstrate several known and new results.

Lemma 3.1. For q ∈ Qλ[r, s, α], we have

|q (ζ) − x(ζ, λ, α)| ≤ y(ζ, λ, α), ζ ∈ D, λ ∈ D, (3.1)

where

x(ζ, λ, α) =
(1 + λ ((1 − α) r + αs) ζ)

(
1 + sλζ

)
1 − s2|ζ |4 + 2s(1 − |ζ |2)ℜ(λζ) + |λ|2|ζ |2(s2 − 1)

−
|ζ |2(λ + sζ)

(
λ + ((1 − α) r + αs) ζ

)
1 − s2|ζ |4 + 2s(1 − |ζ |2)ℜ(λζ) + |λ|2|ζ |2(s2 − 1)

(3.2)

and

y(ζ, λ, α) =
|((1 − α) r + αs) − s| (1 − |λ|2)|ζ |2

1 − s2|ζ |4 + 2s(1 − |ζ |2)ℜ(λζ) + |λ|2|ζ |2(s2 − 1)
. (3.3)

The inequality is attained for ζ0 ∈ D\{0} precisely when ϕ(ζ) = Geiθ,λ(ζ), so there exists a θ ∈ R.

Proof. Let q ∈ Qλ[r, s, α]. Then, for some χq ∈ B, we have∣∣∣∣∣∣∣∣
χq(ζ)
ζ
− λ

1 − λχq(ζ)
ζ

∣∣∣∣∣∣∣∣ ≤ |ζ |. (3.4)

From (1.5), this can be expressed in the same way as∣∣∣∣∣q (ζ) − b(ζ, λ, α)
q (ζ) + c(ζ, λ, α)

∣∣∣∣∣ ≤ |τ(ζ, λ)| |ζ |, (3.5)

where

b(ζ, λ, α) =
1 + λ ((1 − α) r + αs) ζ

1 + λsζ
, (3.6)

c(ζ, λ, α) = −
λ + ((1 − α) r + αs) ζ

sζ + λ
(3.7)

and

τ(ζ, λ) =
λ + sζ

1 + λsζ
. (3.8)

Elementary calculations yield that inequality (3.5) is equivalent to∣∣∣∣∣∣q (ζ) −
|ζ |2 |τ(ζ, λ)|2 c(ζ, λ, α) + b(ζ, λ, α)

1 − |ζ |2 |τ(ζ, λ)|2

∣∣∣∣∣∣ ≤ |ζ | |τ(ζ, λ)| |c(ζ, λ, α) + b(ζ, λ, α)|
1 − |ζ |2 |τ(ζ, λ, α)|2

. (3.9)

Now, we have

1 − |ζ |2 |τ(ζ, λ)|2 =
1 − s2|ζ |4 + 2s(1 − |ζ |2)ℜ(λζ) + |λ|2|ζ |2(s2 − 1)

|1 + λζs|2
,
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c(ζ, λ, α) + b(ζ, λ, α) =
(s − ((1 − α) r + αs))(1 − |λ|2)ζ

(1 + λsζ)(sζ + λ)

and

b(ζ, λ, α) + |ζ |2 |τ(ζ, λ)|2 c(ζ, λ, α) =
(1 + λ ((1 − α) r + αs) ζ)

(
1 + sλζ

)
|1 + λζs|2

−

|ζ |2
(
λ + sζ

) (
λ + ((1 − α) r + αs) ζ

)
|1 + λζs|2

.

Direct computation yields

x(ζ, λ, α) =
|ζ |2 |τ(ζ, λ)|2 c(ζ, λ, α) + b(ζ, λ, α)

1 − |ζ |2 |τ(ζ, λ)|2

and

y(ζ, λ, α) =
|ζ | |τ(ζ, λ)| |c(ζ, λ, α) + b(ζ, λ, α)|

1 − |ζ |2 |τ(ζ, λ)|2
.

These relations and (3.9) yield (3.1). The equality case in (3.1) is attained when q = Giθ,λ(ζ), for
some ζ ∈ D. Conversely, equality in (3.1) for some ζ ∈ D\{0}, implies equality in (3.4). Hence,
Schwarz’s lemma implies the existence of θ ∈ R, such that

χq(ζ) = ζδ(eiθζ, λ),∀ζ ∈ D.

It follows that
Q = Giθ,λ.

□

Remark 3.2. The geometric interpretation of Lemma 3.1 is that q is contained within the closed disk
of radius y(ζ, λ, α) and centered at x(ζ, λ, α).

In the case λ = 0, we obtain the following.

Corollary 3.3. For q ∈ Q0[r, s, α], we have∣∣∣∣∣∣q (ζ) −
1 − ((1 − α) r + αs) s|ζ |4

1 − s2|ζ |4

∣∣∣∣∣∣ ≤ (((1 − α) r + αs) − s) |ζ |2

1 − s2|ζ |4
, ζ ∈ D\ {0} .

The equality case is attained if and only if q = Giθ,0.

Theorem 3.4. Let C1− be a curve inD with ζ(0) = 0 and ζ(1) = ζ0 and γ : ζ(t), 0 ≤ t ≤ 1. Then,

Wλ(ζ0, r, s, α) ⊂ {χ ∈ C : |χ − Q(λ, γ, α)| ≤ R(λ, γ, α)},

where

Q(λ, γ, α) =

1∫
0

x(ζ(t), λ, α)D (t) , R(λ, γ, α) =

1∫
0

y(ζ(t), λ, α)D (t) ,

and D (t) = ζ′(t)dt.
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Proof. As q ∈ Qλ [r, s, α] , we can apply Lemma 3.1, to obtain∣∣∣∣∣∣∣∣
1∫

0

q (ζ (t)) D (t) − Q(λ, γ, α)

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

1∫
0

q (ζ (t)) D (t) −

1∫
0

x(ζ(t), λ, α)D (t)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1∫

0

(q (ζ (t)) − x(ζ(t), λ, α)) D (t)

∣∣∣∣∣∣∣∣ . (3.10)

Using D (t) = ζ′(t)dt in (3.10), we have∣∣∣∣∣∣∣∣
1∫

0

q (ζ (t)) ζ′(t)dt − Q(λ, γ, α)

∣∣∣∣∣∣∣∣ ≤
1∫

0

y(ζ(t), λ, α)|ζ′(t)|dt = R(λ, γ, α).

This establishes the result. □

The next result relies on the following lemma.

Lemma 3.5. For |λ| < 1 and θ ∈ R, the function

Y(ζ) =

ζ∫
0

eiθξ2(
1 + (λeiθ + sλ)ξ + seiθξ2

)2 dξ, ζ ∈ D,

has zeros of multiplicity 3 at the origin and no zero in D. Furthermore, there exists a normalized
starlike univalent function s inD, such that Y(ζ) = 3−1eiθs3(ζ).

This lemma is a result of work by Ponnusamy et al., as reported in [6].

Theorem 3.6. Let θ ∈ (−π, π], ζ0 ∈ D\{0}. Then,
ζ0∫
0

Geiθ,λ (σ) dσ ∈ ∂Wλ(ζ0, r, s, α). Moreover ,

ζ0∫
0

q (δ) dδ =

ζ0∫
0

Geiθ,λ (σ) dσ

implies q = Geiθ,λ for some q ∈ Qλ [r, s, α] and θ ∈ (−π, π].

Proof. It follows from (2.1) that

Ga,λ (ζ) =
1 + ((1 − α) r + αs) ζδ(aζ, λ)

1 + sζδ(aζ, λ)

=
1 + (λa + ((1 − α) r + αs) λ)ζ + ((1 − α) r + αs) aζ2

1 + (λa + sλ)ζ + saζ2
.

Thus, from (3.6), (3.7), and (3.8), it follows that

Ga,λ (ζ) − b(ζ, λ, α) =
(((1 − α) r + αs) − s)(1 − |λ|2)aζ2(
1 + (λa + sλ)ζ + saζ2

)
(1 + λsζ)

,
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and

Ga,λ (ζ) + c(ζ, λ, α) =
(s − ((1 − α) r + αs))(1 − |λ|2)ζ(
1 + (λa + sλ)ζ + saζ2

)
(sζ + λ)

.

Therefore,

Ga,λ (ζ) − x(ζ, λ, α)

= Ga,λ (ζ) −
b(ζ, λ, α) + c(ζ, λ, α)|ζ |2 |τ(ζ, λ)|2

1 − |ζ |2 |τ(ζ, λ)|2

=
1

1 − |ζ |2 |τ(ζ, λ)|2
[
Ga,λ (ζ) − b(ζ, λ, α) − |ζ |2 |τ(ζ, λ)|2

(
Ga,λ (ζ) + c(ζ, λ, α)

)]
=

(((1 − α) r + αs) − s)(1 − |λ|2)
[
aζ(1 + sλζ) + |ζ |2(sζ + λ)

]
(
1 − s2|ζ |4 + 2s(1 − |ζ |2)ℜ(λζ) + |λ|2|ζ |2(s2 − 1)

) [
1 + (λa + sλ)ζ + saζ2

] .
Putting a = eiθ, we obtain

Geiθ,λ (ζ) − x(ζ, λ, α)

=
r(ζ, λ, α)eiθζ2

|ζ |2

(
1 + (λeiθ + sλ)ζ + seiθζ2

) (
1 + (λeiθ + sλ)ζ + seiθζ2

)
(
1 + (λeiθ + sλ)ζ + seiθζ2

)2

=
r(ζ, λ, α)eiθζ2

|ζ |2

∣∣∣1 + (λeiθ + sλ)ζ + seiθζ2
∣∣∣2(

1 + (λeiθ + sλ)ζ + seiθζ2
)2 .

Now, using Y(ζ) defined in Lemma 3.5, it follows that

Geiθ,λ (ζ) − x(ζ, λ, α) = y(ζ, λ, α)
Y ′(ζ)
|Y ′(ζ)|

. (3.11)

As in Lemma 3.5, we can write Y = 3−1eiθs3, where s is starlike in D with s (0) = s′ (0) − 1 = 0,
and for ∀ ζ0 ∈ D\{0}, the linear segment joining 0 and s(ζ0) is entirely in s(D). Consider the curve γ0

given by
γ0 : ζ(t) = s−1 (ts(ζ0)) , t ∈ [0, 1].

Since
Y(ζ(t)) = 2−1eiθ (s(ζ(t)))2 = 3−1eiθ (ts(ζ0))3 = t3Y(ζ0)

and differentiation w.r.t t, we get

Y
′

(ζ(t))ζ
′

(t) = 3t2Y(ζ0), t ∈ [0, 1]. (3.12)

This, along with (3.11), yields

ζ0∫
0

Geiθ,λ (σ) dσ − Q(λ, γ0, α) =

1∫
0

(
Geiθ,λ (ζ (t)) − x(ζ(t), λ, α)

)
ζ′(t)dt

AIMS Mathematics Volume 11, Issue 2, 3499–3511.
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=

1∫
0

y(ζ(t), λ, α)
Y ′(ζ(t))ζ′(t)
|Y ′(ζ(t))ζ′(t)|

|ζ′(t)|dt

=
Y(ζ0)
|Y(ζ0)|

1∫
0

y(ζ(t), λ, α)|ζ′(t)|dt

=
Y(ζ0)
|Y(ζ0)|

R(λ, γ0, α). (3.13)

This implies that
ζ0∫

0

Geiθ,λ (σ) dσ ∈ ∂D (Q(λ, γ0, α),R(λ, γ0, α)) ,

where Q(λ, γ0, α) and R(λ, γ0, α) are specified as in Corollary 3.4. By Corollary 3.4, it follows that

ζ0∫
0

Geiθ,λ (σ) dσ ∈ ∂Wλ(ζ0, r, s, α).

To establish uniqueness, let us assume that

ζ0∫
0

q (σ) dσ =

ζ0∫
0

Geiθ,λ (σ) dσ,

∃ θ ∈ (−π, π], and q ∈ Qλ[r, s, α]. Suppose

h(t) =
Y(ζ0)
|Y(ζ0)|

(q (ζ(t)) − x(ζ(t), λ, α)) ζ′(t),

where γ0 is parameterized by γ0 : ζ(t), 0 ≤ t ≤ 1. Then, the continuity of h follows, and

|h(t)| =

∣∣∣Y(ζ0)
∣∣∣

|Y(ζ0)|
|ζ′(t)| |(q (ζ(t)) − x(ζ(t), λ, α))| .

Applying Theorem 3.1, we obtain

|h(t)| ≤ y(ζ(t), λ, α)|ζ′(t)|.

Moreover, (3.13), implies

1∫
0

ℜh(t)dt =

1∫
0

ℜ

 Y(ζ0)
|Y(ζ0)|

(q (ζ(t)) − x(ζ(t), λ, α)) ζ′(t)
 dt

= ℜ

 Y(ζ0)
|Y(ζ0)|

ζ0∫
0

{
Geiθ,λ (σ) dσ − Q(ζ(t), λ, α)

}
AIMS Mathematics Volume 11, Issue 2, 3499–3511.
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=

1∫
0

ℜy(ζ(t), λ, α)|ζ′(t)|dt.

Thus,
h(t) = y(ζ(t), λ, α)|ζ′(t)|, ∀ t ∈ [0, 1].

From (3.11) and (3.12), this implies that
ζ0∫
0

q (σ) dσ =
ζ0∫
0

Geiθ,λ (σ) dσ on γ0. For analytic functions, the

identity theorem gives us q = Geiθ,λ, ζ ∈ D. □

Remark 3.7. Theorem 3.6, is essential to prove the Theorem 3.8.

Theorem 3.8. Assume λ ∈ D and ζ0 ∈ D\{0}. Thus, ∂Wλ(ζ0, r, s, α) is the Jordan curve described as:

(−π, π] ∋ θ 7→

ζ0∫
0

Geiθ,λ (σ) dσ =

ζ0∫
0

1 + ((1 − α) r + αs)σδ(eiθσ, λ)
1 + sσδ(eiθσ, λ)

dσ.

If
ζ0∫
0

q (σ) dσ =
ζ0∫
0

Geiθ,λ (σ) dσ for some q ∈ Qλ[r, s, α] and θ ∈ (−π, π], then q (ζ) = Geiθ,λ(ζ).

Proof. First, we have to show that the curve

(−π, π] ∋ θ 7→

ζ0∫
0

Geiθ,λ (σ) dσ =

ζ0∫
0

1 + ((1 − α) r + αs)σδ(eiθσ, λ)
1 + sσδ(eiθσ, λ)

dσ

is simple. Let us assume that

ζ0∫
0

Geiθ1 ,λ (σ) dσ =

ζ0∫
0

Geiθ2 ,λ (σ) dσ,

ζ0∫
0

1 + ((1 − α) r + αs)σδ(eiθ1σ, λ)
1 + sσδ(eiθ1σ, λ)

dσ =

ζ0∫
0

1 + ((1 − α) r + αs)σδ(eiθ2σ, λ)
1 + sσδ(eiθ2σ, λ)

dσ,

∃ θ1,θ2 ∈ (−π, π], and θ1 , θ2. Then, Theorem 3.6 yields

Geiθ1 ,λ(ζ0) = Geiθ2 ,λ(ζ0),

implying the relation

τ

χG
eiθ1 ,λ

(ζ)

ζ
, λ

 = τ χG
eiθ2 ,λ

(ζ)

ζ
, λ

 .
Consequently,

s(ζeiθ1 + λ) + λ(1 + λeiθ1ζ)

1 + λeiθ1ζ + λs(ζeiθ1 + λ)
=

s(ζeiθ2 + λ) + λ(1 + λeiθ2ζ)

1 + λeiθ2ζ + λs(ζeiθ2 + λ)
.
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After some simplification, we get ζeiθ1 = ζeiθ2 , giving a contradiction. It follows that the curve
is simple. Wλ(ζ0, r, s, α) is compact convex subset of C with a non-empty interior, therefore,
∂Wλ(ζ0, r, s, α) forms a simple closed curve. From Theorem 3.6, the boundary ∂Wλ(ζ0, r, s, α) consists

of the curve (−π, π] ∋ θ 7→
ζ0∫
0

Geiθ,λ (σ) dσ. The simple closed curve cannot contain any simple closed

curve other than itself. Thus, ∂Wλ(ζ0, r, s, α) is given by

(−π, π] ∋ θ 7→

ζ0∫
0

Geiθ,λ (σ) dσ =

ζ0∫
0

1 + ((1 − α) r + αs)σδ(eiθσ, λ)
1 + sσδ(eiθσ, λ)

dσ.

□

4. Conclusions

In this work, we have successfully determined the regions of variability Wλ(ζ0, r, s, α) for the
integral functional

∫ z0

0
q(ρ)dρ when q belongs to the class Qλ[r, s, α]. Our analysis provides explicit

characterizations of these variability regions for functions in the broader class Q[r, s, α] of analytic
functions with prescribed boundary behavior in the unit disk.

The main results extend classical variability theory to the families of analytic functions with specific
geometric properties. The derived regions offer new understanding of the geometric properties of
integral functionals over function classes and provide tools for optimization problems in complex
analysis.

The corollary results for alternate parameter sets demonstrate the applicability of our approach and
suggest potential applications in univalent function theory, geometric function theory, and related areas
of complex analysis. These findings contribute to the broader understanding of extremal problems for
analytic functions subject to geometric conditions.
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