AIMS Mathematics, 11(2): 3499-3511.
DOI:10.3934/math.2026142
ATMS Mathematics Received: 28 September 2025

Revised: 12 November 2025

Accepted: 20 November 2025
https://www.aimspress.com/journal/Math Published: 05 February 2026

Research article

Regions of variability for generalized Janowski functions

Bilal Khan'*, Fairouz Tchier’ and Manuela Oliveira>*

! Institute of Mathematics, Henan Academy of Sciences NO.228, Chongshi Village, Zhengdong New
District, Zhengzhou, Henan 450046, China

2 Mathematics Department, College of Science, King Saud University, P. O. Box 22452, Riyadh
11495, Saudi Arabia

3 Department of Mathematics and CIMA - Center for Research on Mathematics and its Applications,
University of Evora, Evora, Portugal

* Correspondence: Email: bilalmaths789 @ gmail.com, mmo @uevora.pt.

Abstract: Letr e C, s € [-1,0),0 < a < 1. Then, Q[r, s, @] stands for the set of analytic functions ¢
that is within the open unit disk E, with ¢ (0) = 1, and satisfies the explicit representation

I1+((1-a)r+as)y )
L+ sy (0) ’

where y (0) = 0 and |y ()| < 1. In this article, we find the regions of variability W, ({, r, s, @) for

q) =

20
f q (0) dp when ¢ ranges over the class Q, [r, s, @] defined as
0

Qilrs,al={qgeQlr,s,al:q (0)=((1-a)(r-ys) 4}

for any fixed ¢, € E and A € E. As a corollary, the region of variability appears for the alternate sets of
parameters as well.
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1. Introduction

Let A be the set of analytic functions (AFs) in D = {{ € C : |{| < 1} that are expressed as
SO =L+ ) al" (1.1)
n=2

Consider Q to be a topological vector space equipped with the topology defined by uniform
convergence over compact subsets of the set 9. Let us define the class B to include all functions
x that are analytic on D, satisfy the condition |y({)| < 1 for every ¢ € D, and are normalized such that
x(0) =0.

It can be said that an AFs ¢ is subordinate to another function g, represented as ¢ < g, if there exists
X € B, for which the identity

$(0) = gx(0))

holds for all £ € D. In the special case where g is univalent (i.e., one-to-one) on D, this subordination
implies that ¢(0) = g(0), and that the image of ¢ is contained within that of g, meaning ¢(D) C g(D).

Now, let us introduce the family Q[r, s], containing functions ¢ that are analytic in D, fulfill ¢(0) =
1, and can be expressed in the form

_ 1+
1+ sx(0)

where r € C, s € [—1,0) with r # 5. Note that Q[1,-1] = Q.
For arbitrarily fixed numbers r € C, s € [-1,0) with r # sand 0 < a < 1, let Q[r, 5, @] be the class
of AFs g such that ¢ (0) = 1, and g € Q[r, s, ] if and only if

q(0) X €B.LeD, (1.2)

) = 1+ -a)r+as)y)
e [+ 5@

Note that Q[1,—1,0] = Q. Let g € Q[r, s, @], then, applying the Herglotz representation, there exists a
unique positive unit measure y € (-, ], where

, (e€D. (1.3)

q() = fﬂ il - Q)+ as) L au), e D. (1.4)
—r + se''l
As evident from (1.3) that
_ q() -1
X = D rran-—sqa@ * P (1)
conversely, we have
g 0)=((1-a)r+as)—s)x,0). (1.6)

Let g € Q[r, s, a]. Then, call on the Schwarz lemma, that is, I,y’q (0)| < 1 (see [1]). This yields
g0 =0-a)(r-sAa
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for some A € D. By using ( 1.5), one can compute

s (0) 1’ 0
& = O + sA%
2 2(0-a)(r—ys)
Now, if we let
Xq(©)
o _
g()={ 1> 1,
0 Al =1,
consequently
1 /\/q(,() ’ _ 1 X;’(()
¢ =1 T () leo= s < 1,
0 =1,

The classical Schwarz lemma tells us that for any analytic map g that dominates the unit disk and
fixes the origin, we must have |g ({)| < || and |g’ (0)] < 1. The boundary cases are realized when g
takes the form g (0) = €'®/ for some a € R. The inequality |g’ (0)] < 1 guarantees the existence of a
point a in the open unit disk such that g’ (0) = a. Thus, we have

g 0)=20-a)(r-2s) [(1 - I/llz)a - s/lz] .

Hence, for any 4 in D and any {p in O, we obtain W, ({y, r, s, @), expressed as fo‘&) q (6)do, when ¢q
varies within the family Q, [r, s, @], characterized by

Qi r,s,al={geQ[r,s,a] : ¢ (0)=({((1 —a)r+as)—s) A},

and .
Wy (o, 1, 8,) = {f q (6)dé, qeQQlrs, oz]} .
0

The area of complex analysis, and specifically that of univalent functions, has been a popular
research area in the literature. A principal target of this area is the fundamentally remarkable result,
the Schwarz lemma ( [1], 1989), and from that point, many contributions have been made to study the
properties of some classes of univalent functions. Most relevant to our work, Yanagihara [2,3] studied
regions of variation for functions that have bounded variation in 2005 and for convex functions in 2006.
Then, in many avenues, Ponnusamy and Vasudevarao [4, 5] shared results on the region of variation of
subclasses of univalent functions, for functions with a positive real part, and other classes of univalent
functions [6]. In the year 2008, Ponnusamy, along with other collaborators [7], also studied the region
of variation for close-to-convex functions. Still in the year 2008, Ponnusamy et al. [8] investigated
region of variation of univalent functions ¢ (), where (¢ (¢) is spirallike, while Ul-Haq [9] studied
the regions of variability for Janowski convex functions in 2014. In 2020, Raza et al. [10] examined
the region of variability for a subclass of analytic functions, and Bukhari et al. examined the region of
variability of Bazilevic functions in [11]. In 2025, Khan et al. [12] published a comprehensive study of
geometric perspectives on the variability of spirallike functions in relation to Janowski functions with
respect to a boundary point. Collectively, their works contribute to an understanding of the properties
and behavior of various classes of univalent functions, and their connections between the theory of
functions and geometric properties.
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While the aforementioned studies have significantly advanced our understanding of variability
regions for various function classes, most investigations have focused on specific subfamilies with
fixed geometric domains. Of particular relevance to our work, Ul-Haq [9] studied the regions
of variability for Janowski convex functions in 2014, and in 2015, Raza et al. [13] investigated
variability regions V,({y) for the integral functional fO{O p(p) dp when p ranges over the class P,[A, B]
of Janowski functions. However, their study considered only the case where boundary parameters
are fixed, without exploring the effect of convex combinations of these parameters on the resulting
variability regions. The present paper addresses this gap by introducing and investigating the class
Qu[r, s, a] of generalized Janowski functions, where the additional parameter @ € [0, 1) provides
a convex combination structure that interpolates between different geometric configurations. Our
main contribution lies in determining the complete regions of variability W,({y, r, s, @) for the integral
functional fOZO q(p) dp when g ranges over Q,[r, s, a]. This work directly extends and generalizes the
results of Raza et al. [13] in the following significant ways: (i) Setting @ = 0 in our main theorems
recovers their variability regions as a special case, thereby validating our approach while demonstrating
that their results are embedded within our broader framework, and (ii) the introduction of the parameter
a enables a continuous transition between boundary behaviors, yielding new geometric insights into
how variability regions evolve as functions move between different Janowski-type domains. Moreover,
our explicit characterization implies how the geometry of these regions depends smoothly on «, a
case not studied in previous work. The explicit characterization of these regions not only enriches
the geometric function theory but also provides a flexible tool for applications where intermediate
geometric properties are of interest. The remainder of this paper is organized as follows: Section
2 presents preliminary results and basic properties of W, ({y,r, s,@). Section 3 contains our main
theorems on variability regions with detailed proofs, and in Section 4, we conclude our work.

2. Basic properties of W, ({y, 1, s, @)

Proposition 2.1. (i) The set W, ({y, 1, s, @) forms a compact subset of the complex plane C.
(ii) The set W, ({y, 1, §, @) forms a convex set of the complex plane C.
(iii) If || = 1 or £y = O, then,

(l—a)(r—s)(
s

1
Wi(lo, 1, 5,a) = {50 + do — 1 log(1 + S/Mo))},

and if |[1] < 1 and ¢, # O, then,

1-— - 1
{40 fUzalr=s) (40 - — log(1 + s%))}

s
is the interior point of W, ({y, 1, 5, @) .

Proof. (1) As Q,[r, s, a] is a compact subset of C, thus, W, ({y, r, s, @) is also compact.
(ii) Let g1, g2 € Q,[r, s, a]. Then,

q) =0 =-0Dq: () +192(0), t€[0,1]

is also in Q,[r, s, a]. Therefore, W, ({o, r, s, @) is convex.
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(>iii) Since if |1| = [)(%(O)l = 1, then, by use of The Shwarz lemma, we obtain y,({) = A, which

yields
1+A(1-a)r+as)

1+ As¢

B (1-a)(r—ys) _1
q@‘”( 5 ){1 1+sﬂ§}'

q) =

This implies that

Therefore,
190

WalGor,s,0) = fq(é)daz {§O+ W(
0

1
{o — — log(1 + sﬂ{o))}.
sA

This also trivially holds true when &, = 0. For 1 € D and a € D, set

+A4
sy =14
1+ AL
t C 14 (1 —a)r + as)od(ac )
+ (1 —a)r+ as)odé(ao
= ’ . 2.1
f Gaa(7) do f 1 + soé(ao, 1) do, {eD 1)
0 0
Then,
¢
fGM (o)do is in Q4[r, s, a],
0
and

Xxe({) = £6(ag, V).
For fixed A € D and ¢, € D\{0}, the function

jg1+(ﬁa+((1 —a)r+as) Do+ (1 —a)r+ as)ac?

1 + (Aa + sA)o + sac?

%o
Z)BaHfGM(O')dO': do
0 0
1s analytic and non-constant on a € D, implying it’s an open mapping. Hence,

4o

1 - - 1
fGO,/l (0)do = {50 + % ((0 ~ 1 log(1 + S/lfo))}

0
is an element of the interior of
14}

fGa,,l (o)do :ae Dy c Wi, r, s, al.
0

Remark 2.2. Proposition 2.1 is sufficient to find W,[{y, 7, s,a] for 0 < A < 1 and ¢, € D\{0}.
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3. Main results

In this part, we present and demonstrate several known and new results.

Lemma 3.1. For g € Qi[r, s, @], we have

|6](§) —x({,/l,a/)l Sy(ga/l’a)’ { € D7/l € 5’

where
A+ =a)r+as)O)(1 +sA)
x({, o) =
1= s2Z* + 251 = [ZPHR(AD) + AP (s* = 1)
P+ 5O (A+ (1= a)r + as)¢)
T 1= 2P+ 25(1 = KPR + [APICP(s2 - 1)
and . e
W) = (1 =a)r+as)—s|(1 -7

1= $2Z1* + 25(1 = IZPHRAL) + 1APIP(s> = 1)

The inequality is attained for ¢, € D\{0} precisely when ¢({) = G, ,({), so there exists a 6 € R.

Proof. Let g € Q[r, s, a]. Then, for some y, € B, we have
Xq({)
7 A4

— ==
{

From (1.5), this can be expressed in the same way as

‘q(g) - b([;,/i,(l)
g +cld, @)

< [n(Z, VL],

where
b)) = 1+/l((11:_c/xl)s;:+ as)g’
_7l+((1 —a)r+as)

s§+ﬁ

c(l, A, @)

and _
A+ sl

1+ Ase
Elementary calculations yield that inequality (3.5) is equivalent to

(4, ) =

P 7 DF e&, A, @) + b, A, @) o KT Dlle(d. 4. @) + b, 4, )]

@) - <
9k 1= IR [T, P 1= IR0 A )P

Now, we have
1= 211+ 2s(1 = [ZHRAL) + 1APILP(s* = 1)

1= P DP =
6P 1r(¢. ) e

b

3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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(s= (1 =a)r+as)1 -4
(14 As)(s¢ + A)

cl,, )+ b, A, @) =

and

. . (l+/l((1—a)r+as)§)(l+8/l_§)
b, A, )+ I" 1T, DI e, @) = 3 -
11+ AZs|
|§|2(/l+s2)(z+((l—a/)r+a/s)§)

11+ AsP

Direct computation yields

P (g, DI (g, A, @) + (L, 4, @)
1= 7, DI

x(£, A, @)

and
IZ117(Z, Dlle(d, A4, @) + b({, 4, @)
L= 1ZP [, VP '
These relations and (3.9) yield (3.1). The equality case in (3.1) is attained when g = Gy (), for

some ¢ € D. Conversely, equality in (3.1) for some ¢ € D\{0}, implies equality in (3.4). Hence,
Schwarz’s lemma implies the existence of 8 € R, such that

Xq({) = {8, ),V € D.

y,a) =

It follows that
Q=G

O

Remark 3.2. The geometric interpretation of Lemma 3.1 is that g is contained within the closed disk
of radius y(, 4, @) and centered at x(, 4, @).

In the case A = 0, we obtain the following.

Corollary 3.3. For g € Qy[r, s, @], we have

(A -a)r+as) sl Ld-ar+as)—s) ¢
1= g1 B 1 - s2IZ1

1 -
q({) - . £ € D\{0}.

The equality case is attained if and only if g = Gygy.
Theorem 3.4. Let C'— be a curve in D with £(0) = 0 and {(1) = {y and y : £(£),0 <t < 1. Then,

W/l(§07 r,s, (I) c {X eC: IX - Q(/la Y a/)l < R(/L Y a)}’

where
1 1

0,y,a) = f x(£@®),,a)D(1), R, y,a)= f (&), 4, @)D (1),
0 0
and D (¢) = {'(t)dt.
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Proof. As g € Q,[r,s,a], we can apply Lemma 3.1, to obtain

1

f gD @) - 0,7y, )

0

1 1

f9(4(l))D(t)—fX(Z(I),/La)D(t)

0 0

1
_ f (g (£ (®) = L0, 1) D)
0

Using D (¢) = {'(¢)dt in (3.10), we have
1

fCI(é ) ' (Ddt — Q4,7 @)

0

1

< f)’({(l),/l,a)lé”(t)ldl=R(/L%C¥)-

0

This establishes the result.

The next result relies on the following lemma.
Lemma 3.5. For || < 1 and 6 € R, the function

4

i0 ¢2
ro = [ ———= Jd£, (€D,
S (1+ Qe + sDE + sei’e?)

(3.10)

has zeros of multiplicity 3 at the origin and no zero in D. Furthermore, there exists a normalized

starlike univalent function s in D, such that Y(¢) = 37'e"s%(0).
This lemma is a result of work by Ponnusamy et al., as reported in [6].

1)
Theorem 3.6. Let 6 € (—n, xt], {, € D\{0}. Then,fGem,,l (o)do € IW, (Lo, 1, 5, ). Moreover ,
0

14} %0

fq(d) do = fGeiG,/l (o)do

0 0
implies g = G, 4 for some g € Q, [, s, @] and 0 € (—n, 7].
Proof. It follows from (2.1) that

1+ —-a)r+as)ldal,d)
1+ si6(al, 1)
1 +a+((1 —a)r+as) )+ (1 —a)r+ as)al?
1 + (Aa + sA) + sal? .

Thus, from (3.6), (3.7), and (3.8), it follows that

Ga,/l (g)

(1 —a)r+as) - )1 —|1P)al’
(1+ @a + s0¢ + sa?) (1 + As0)

Gaa()=b((, 4 ) =

AIMS Mathematics Volume 11, Issue 2, 3499-3511.
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and

(s = (1 —a)r+as)( - A"
(1 + (la + s + sa§2) (s + ﬁ)'

Ga,/l ({) + C(g, /l’ (1) =

Therefore,

Ga,/l ({) - X(g, /l’ Q)
b, A, @) + c(, L)l [t DI
= Ga —
4©) 1= [P (2, VP

1
= G, — b, A, @) = [P 17, DP (G, A,
e (G © = PE A0 = I (G (O + (6. 4.00)]

(1= a)r+as) = $)(1 = |2P) [aZ(l + s20) + KP(sT + )
(1= 211 + 251 = [ZHRAD) + ARG = DY [1+ @+ s)E + sad?]

Putting a = €%,

we obtain
G (0) = x(, A, )
1, A, )e? (1 + (e + s + se’y{z) (1 + (el + s + Seiegz)

¢t (1 + e + s)¢ + se2?)’
|2

G A |1 + (e + s + s
¢t (1 + (et + s + se""{z)z.

Now, using Y(¢) defined in Lemma 3.5, it follows that

Y'({)
1Y ()

As in Lemma 3.5, we can write Y = 37!¢s3, where s is starlike in D with s(0) = s/ (0) = 1 = 0,
and for V ) € D\{0}, the linear segment joining 0 and s({p) is entirely in s(2). Consider the curve vy
given by

Gei(’,/l (g) - X(g, /15 Cl’) = y(ga /l’ a')

(3.11)

Yo : (1) = 57" (ts(&)) .t € [0,1].
Since ‘ .
Y(L(0) = 27" (s1))* = 37" (t5(L))’ = £Y()

and differentiation w.r.t f, we get

Y'({0)¢ (1) = 3 Y (&), t€[0,1]. (3.12)
This, along with (3.11), yields
) 1
f Geo,a(0)do — Q(A, v, @) = f (Geina (£ (1) = x(G(D), A, ) I’ (dt
0 0

AIMS Mathematics Volume 11, Issue 2, 3499-3511.
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1

Yoo
b b d
f YEO- L e Ot

0

1
Y(&o) ’
- A
Y@l YL, A, @) (1)\dt

_ Yo R(A,y0, @). (3.13)

1Y (o)l

This implies that
14

f G, () do € 8D (Q(A, ¥0, @), R(A, y0,@)) »
0
where Q(4, vy, @) and R(4, y, @) are specified as in Corollary 3.4. By Corollary 3.4, it follows that

140

fGeieJ (o)do € W, (L, 1, 5, ).

0
To establish uniqueness, let us assume that

% %0

fq (o)do = fGei",/l (o) do,

0 0

A6 € (-n,x], and g € Q,[r, s, @]. Suppose

Y(&o)
1Y (o)l

where vy is parameterized by vy, : {(¢), 0 < ¢ < 1. Then, the continuity of 4 follows, and

h(t) =

(q (1) = x(§(0), A, @) §' (1),

[Y &)l

h =
hOL= v

I ®O11(g ({(@®) = x({(1), 4, @)
Applying Theorem 3.1, we obtain

|h(1)] < y(£(D), 4, )| ().
Moreover, (3.13), implies

3 (o)
fy\h(f)df f [lY@o)l (q (&) —x({®), 1, ) (f)l t

Y(&o)

G (o) dor — A,
V(2] J { a1 (0)do = QL(D), 4, @)}

=R
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1
= f Ry(C®), 4, )l D)ldt.
0

Thus,
h(t) = y((@®), 4, )l (D], ¥ t € [0, 1].
) )
From (3.11) and (3.12), this implies that f q(o)do = f G, (o) do on 7. For analytic functions, the
0 0
identity theorem gives us g = Gy, { € D. i
Remark 3.7. Theorem 3.6, is essential to prove the Theorem 3.8.
Theorem 3.8. Assume A € D and {y € D\{0}. Thus, OW,({y, 1, s, @) is the Jordan curve described as:

%o 14

(—m,n] 3260 fGe,-g’/1 (o) do = f
0 0

1+((1=-a)r+as)cé?o, )

. do.
1 + sod(eo, A) o

14} 14}
If fq (o)do = fGe,-y’,l (o) do for some g € Q[r, s,a] and 8 € (—n, ], then g ({) = G, 1(L).
0 0

Proof. First, we have to show that the curve

[0 %o .
1+((1-a)r+as)céo, )
-, 0 G.i do = . d
(56 f a()do f [+ s03(e¥ar, ) 7
0 0
is simple. Let us assume that
%o 4\
fGeiHI,/l (O‘) do = fGei"Z,/l (0’) dO’,
0 0
4o 4\

f 1+ (1 -a)r+as)céeao, ﬂ)dg B f 1+((1-a)r+as)cdée®o, /l)do_

1 + soé(e o, Q) 1 + sod(e20, )
0 0

16,0, € (—n,n], and 8, # 6,. Then, Theorem 3.6 yields

G 1(80) = Gein 2(40),

implying the relation

(/\/ G o, 4(4 ) ) (X G ioy A(g ) )
T|———— A =7|—,1].
¢ ¢
Consequently,
s(Ze® + )+ AL+ 2e)  s(Ze™ + 1) + A1 + 2e™Y)
1+ e + As(Ze® + Q) o1+ Aei®2f + As(let® + )

AIMS Mathematics Volume 11, Issue 2, 3499-3511.
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After some simplification, we get Zet = (e, giving a contradiction. It follows that the curve
is simple. W, ({y,r, s,) is compact convex subset of C with a non-empty interior, therefore,

oW, (&, 1, s, @) forms a simple closed curve. From Theorem 3.6, the boundary dW,({y, r, s, @) consists
140
of the curve (-7, 7] 2 0 — f G.o , (0) do. The simple closed curve cannot contain any simple closed

0
curve other than itself. Thus, 0W,({o, r, s, @) is given by

4

f 14+ ({1 =a)r+as)oé(eo, )

. do-.
1 + soo(eo, A) o

%
(—m,m]>6 fGei",/l (o)do =
0 0

4. Conclusions

In this work, we have successfully determined the regions of variability W,({,r, s, @) for the
integral functional fOZO q(p)dp when g belongs to the class Q,[r, s, a]. Our analysis provides explicit
characterizations of these variability regions for functions in the broader class Q[r, s, @] of analytic
functions with prescribed boundary behavior in the unit disk.

The main results extend classical variability theory to the families of analytic functions with specific
geometric properties. The derived regions offer new understanding of the geometric properties of
integral functionals over function classes and provide tools for optimization problems in complex
analysis.

The corollary results for alternate parameter sets demonstrate the applicability of our approach and
suggest potential applications in univalent function theory, geometric function theory, and related areas
of complex analysis. These findings contribute to the broader understanding of extremal problems for
analytic functions subject to geometric conditions.
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