Research article Topical Sections

The analysis of the traveling wave solutions of the Hirota-Ramani equation via the modified Kudryashov method

  • Received: 08 September 2024 Revised: 13 January 2025 Accepted: 20 January 2025 Published: 20 February 2025
  • MSC : 35A24, 35A99, 35C07

  • In this paper, the modified Kudryashov method is utilized to construct the exact traveling solutions to the Hirota­-Ramani equation. The Hirota-Ramani equation holds significant importance as a fundamental model in the examination of nonlinear and integrable systems. It offers valuable theoretical insights and practical applications across multiple domains of physics and applied mathematics. The modified Kudryashov method was utilized to acquire the novel solutions of the Hirota-Ramani equation. Consequently, numerous analytical exact solutions have been derived, including rational, trigonometric, and hyperbolic function solutions. This method is potent, effective, and serves as an option for developing new solutions to many sorts of fractional differential equations utilized in mathematical physics.

    Citation: Aslı Alkan, Mehmet Kayalar, Hasan Bulut. The analysis of the traveling wave solutions of the Hirota-Ramani equation via the modified Kudryashov method[J]. AIMS Mathematics, 2025, 10(2): 3291-3305. doi: 10.3934/math.2025153

    Related Papers:

  • In this paper, the modified Kudryashov method is utilized to construct the exact traveling solutions to the Hirota­-Ramani equation. The Hirota-Ramani equation holds significant importance as a fundamental model in the examination of nonlinear and integrable systems. It offers valuable theoretical insights and practical applications across multiple domains of physics and applied mathematics. The modified Kudryashov method was utilized to acquire the novel solutions of the Hirota-Ramani equation. Consequently, numerous analytical exact solutions have been derived, including rational, trigonometric, and hyperbolic function solutions. This method is potent, effective, and serves as an option for developing new solutions to many sorts of fractional differential equations utilized in mathematical physics.



    加载中


    [1] N. J. Ford, A. C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy, Numer. Algorithms, 26 (2001), 333–346. https://doi.org/10.1023/A:1016601312158 doi: 10.1023/A:1016601312158
    [2] S. M. Ege, E. Misirli, The modified Kudryashov method for solving some fractional-order nonlinear equations, Adv. Differ. Equ., 2014 (2014), 135. https://doi.org/10.1186/1687-1847-2014-135 doi: 10.1186/1687-1847-2014-135
    [3] H. M. Srivastava, D. Baleanu, J. A. T. Machado, M. S. Osman, H. Rezazadeh, S. Arshed, et al., Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method, Phys. Scr., 95 (2020), 075217. https://doi.org/10.1088/1402-4896/ab95af doi: 10.1088/1402-4896/ab95af
    [4] K. Hosseini, P. Mayeli, R. Ansari, Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optik, 130 (2017), 737–742. https://doi.org/10.1016/j.ijleo.2016.10.136 doi: 10.1016/j.ijleo.2016.10.136
    [5] S. R. Rizvi, I. Afzal, K. Ali, M. Younis, Stationary solutions for nonlinear Schrödinger equations by Lie group analysis, Acta Phys. Pol. A, 136 (2019), 187–189. https://doi.org/10.12693/APhysPolA.136.187 doi: 10.12693/APhysPolA.136.187
    [6] R. Hirota, A. Ramani, The Miura transformations of Kaup's equation and of Mikhailov's equation, Phys. Lett. A, 76 (1980), 95–96. https://doi.org/10.1016/0375-9601(80)90578-2 doi: 10.1016/0375-9601(80)90578-2
    [7] S. M. Ege, E. Misirli, Extended Kudryashov method for fractional nonlinear differential equations, Math. Sci. Appl. E-Notes, 6 (2018), 19–28. https://doi.org/10.36753/mathenot.421751 doi: 10.36753/mathenot.421751
    [8] A. Akbulut, M. Kaplan, F. Tascan, The investigation of exact solutions of nonlinear partial differential equations by using exp(−Φ(ξ)) method, Optik, 132 (2017), 382–387. https://doi.org/10.1016/j.ijleo.2016.12.050 doi: 10.1016/j.ijleo.2016.12.050
    [9] M. A. Abdou, The extended tanh method and its applications for solving nonlinear physical models, Appl. Math. Comput., 190 (2007), 988–996. https://doi.org/10.1016/j.amc.2007.01.070 doi: 10.1016/j.amc.2007.01.070
    [10] A. M. Wazwaz, Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633–640. https://doi.org/10.1016/j.amc.2007.01.056 doi: 10.1016/j.amc.2007.01.056
    [11] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [12] S. Liang, D. J. Jeffrey, Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation, Commun. Nonlinear Sci. Numer., 14 (2009), 4057–4064. https://doi.org/10.1016/j.cnsns.2009.02.016 doi: 10.1016/j.cnsns.2009.02.016
    [13] R. Abazari, R. Abazari, Hyperbolic, trigonometric, and rational function solutions of Hirota‐Ramani equation via (G′/G)‐expansion method, Math. Probl. Eng., 2011 (2011), 424801. https://doi.org/10.1155/2011/424801 doi: 10.1155/2011/424801
    [14] F. Ashraf, R. Ashraf, A. Akgül, Traveling waves solutions of Hirota-Ramani equation by modified extended direct algebraic method and new extended direct algebraic method, Int. J. Mod. Phys. B, 38 (2024), 2450329. https://doi.org/10.1142/S0217979224503296 doi: 10.1142/S0217979224503296
    [15] S. Behera, Optical solitons for the Hirota-Ramani equation via improved G′/G -expansion method, Mod. Phys. Lett. B, 39 (2025), 2450403. https://doi.org/10.1142/S0217984924504037 doi: 10.1142/S0217984924504037
    [16] M. Nadjafikhah, V. Shirvani-Sh, Lie symmetries and conservation laws of the Hirota-Ramani equation, Commun. Nonlinear Sci. Numer., 17 (2012), 4064–4073. https://doi.org/10.1016/j.cnsns.2012.02.032 doi: 10.1016/j.cnsns.2012.02.032
    [17] Y. Liu, L. Peng, Some novel physical structures of a (2+1)-dimensional variable-coefficient Korteweg-de Vries system, Chaos Soliton Fract., 171 (2023), 113430. https://doi.org/10.1016/j.chaos.2023.113430 doi: 10.1016/j.chaos.2023.113430
    [18] J. Ji, A new expansion and new families of exact traveling solutions to Hirota equation, Appl. Math. Comput., 204 (2008), 881–883. https://doi.org/10.1016/j.amc.2008.07.033 doi: 10.1016/j.amc.2008.07.033
    [19] G. C. Wu, T. C. Xia, A new method for constructing soliton solutions and periodic solutions of nonlinear evolution equations, Phys. Lett. A, 372 (2008), 604–609. https://doi.org/10.1016/j.physleta.2007.07.064 doi: 10.1016/j.physleta.2007.07.064
    [20] J. Yang, A. Liu, T. Liu, Forced oscillation of nonlinear fractional differential equations with damping term, Adv. Differ. Equ., 2015 (2015), 1. https://doi.org/10.1186/s13662-014-0331-4 doi: 10.1186/s13662-014-0331-4
    [21] C. S. Liu, A new trial equation method and its applications, Commun. Theor. Phys., 45 (2006), 395. https://doi.org/10.1088/0253-6102/45/3/003 doi: 10.1088/0253-6102/45/3/003
    [22] P. N. Ryabov, D. I. Sinelshchikov, M. B. Kochanov, Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations, Appl. Math. Comput., 218 (2011), 3965–3972. https://doi.org/10.1016/j.amc.2011.09.027 doi: 10.1016/j.amc.2011.09.027
    [23] M. Kaplan, A. Bekir, A. Akbulut, A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics, Nonlinear Dyn., 85 (2016), 2843–2850. https://doi.org/10.1007/s11071-016-2867-1 doi: 10.1007/s11071-016-2867-1
    [24] S. T. Demiray, Y. Pandir, H. Bulut, Generalized Kudryashov method for time-fractional differential equations, Abstr. Appl. Anal., 2014 (2014), 901540. https://doi.org/10.1155/2014/901540 doi: 10.1155/2014/901540
    [25] T. Aktürk, Y. Gürefe, Y. Pandır, An application of the new function method to the Zhiber-Shabat equation, Int. J. Optim. Control, 7 (2017), 271–274. https://doi.org/10.11121/ijocta.01.2017.00488 doi: 10.11121/ijocta.01.2017.00488
    [26] A. Alkan, Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation, KMU J. Eng. Nat. Sci., 4 (2022), 117–134. https://doi.org/10.55213/kmujens.1206517 doi: 10.55213/kmujens.1206517
    [27] A. Alkan, T. Aktürk, H. Bulut, The traveling wave solutions of the conformable time-fractional zoomeron equation by using the modified exponential function method, Eskişeh. Tech. Univ. J. Sci. Tech. Appl. Sci. Eng., 25 (2024), 108–114. https://doi.org/10.18038/estubtda.1370631 doi: 10.18038/estubtda.1370631
    [28] M. Kaplan, A. Akbulut, The analysis of the soliton-type solutions of conformable equations by using generalized Kudryashov method, Opt. Quantum Electron., 53 (2021), 498. https://doi.org/10.1007/s11082-021-03144-y doi: 10.1007/s11082-021-03144-y
    [29] S. S. Ray, New analytical exact solutions of time fractional KdV–KZK equation by Kudryashov methods, Chin. Phys. B, 25 (2016), 040204. https://doi.org/10.1088/1674-1056/25/4/040204 doi: 10.1088/1674-1056/25/4/040204
    [30] A. Arikoglu, I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Soliton Fract., 34 (2007), 1473–1481. https://doi.org/10.1016/j.chaos.2006.09.004 doi: 10.1016/j.chaos.2006.09.004
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(161) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog