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Abstract: In this paper, the modified Kudryashov method is utilized to construct the exact traveling
solutions to the Hirota-Ramani equation. The Hirota-Ramani equation holds significant importance as
a fundamental model in the examination of nonlinear and integrable systems. It offers valuable
theoretical insights and practical applications across multiple domains of physics and applied
mathematics. The modified Kudryashov method was utilized to acquire the novel solutions of the
Hirota-Ramani equation. Consequently, numerous analytical exact solutions have been derived,
including rational, trigonometric, and hyperbolic function solutions. This method is potent, effective,
and serves as an option for developing new solutions to many sorts of fractional differential equations
utilized in mathematical physics.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been extensively studied in several fields of
mathematical and physical sciences, including physics, biology, and chemistry. The analytical
solutions of these equations are crucial, since many mathematical and physical models are
characterized by nonlinear partial differential equations (PDEs). Within the realm of possible solutions
to NLEEs, specific solutions exist that rely solely on a singular combination of variables such as
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solitons. A soliton, in the fields of mathematical and physical sciences, refers to a solitary wave, wave
packet, or pulse that sustains its shape and travels at a consistent velocity due to self-reinforcement.
Solitons arise from the simultaneous nullification of nonlinear events inside the environment. Solitons
emerge as the solutions of a broad category of weakly nonlinear dispersive partial differential equations
(PDEs) that describe physical systems [1].

An analytical method for determining the precise solutions of nonlinear differential equations,
particularly those pertaining to integrable systems and soliton theory is the modified Kudryashov
method (MKM). This method provides novelty and advantages over more conventional approaches
for solving nonlinear PDEs when applied to the Hirota-Ramani equation (HRE). The ability to apply
the MKM to non-integrable equations as well as integrable ones (such as many soliton equations) is
one of its main innovations. The HRE belongs to the class of integrable systems; nonetheless, the
method is flexible and powerful, since it may be used to equations without a rich integrable
structure [2].

Finding rational solutions to nonlinear equations, that is, solutions written as ratios of polynomials,
is a specialty of the MKM. Rational solutions, in the framework of the HRE, might offer fresh
perspectives on the system's behavior that may be difficult to gain by other techniques, such the inverse
scattering transform or Hirota's bilinear method. Particularly for multi-soliton solutions, traditional
techniques for solving nonlinear PDEs, such as the inverse scattering transform, can be
computationally and technically taxing. By converting the original nonlinear equation into a
manageable, easier to solve polynomial form, the MKM streamlines the solution procedure. Due to its
simplification, the approach is quite effective in obtaining precise solutions [3,4].

The capacity to produce a broad range of solutions, such as singular solutions (solutions that
display singularities, like blow-ups) and soliton solutions (localized, non-dispersive waves) is another
innovation of the MKM. Like many soliton equations, the HRE can have both soliton-like and more
complicated solution structures; this diversity can be captured via the MKM [4].

The computationally efficient Kudryashov approach consists of reducing the original equation to
a reduced form in which an ansatz or a good estimate of the solution's form can be used. In contrast,
several conventional techniques for determining soliton solutions could be difficult to automate and
call for certain integrability requirements [4].

A large class of nonlinear PDEs can be solved using the generalizable method. The HRE is used
not only to extend and modify it to other kinds of equations in mathematical physics. Because of its
versatility, it can be used to investigate novel exact solutions in more general domains such as fluid
dynamics, nonlinear optics, and plasma physics. The HRE is used in fluid mechanics to model the
behavior of shallow water waves or internal waves [5—7]. The HRE is used in nonlinear optics,
especially in modeling optical solitons and nonlinear light propagation [6,8,9]. The HRE is used in
plasma physics, particularly to model the dynamics of nonlinear waves and plasma solitons [6].

While Hirota's bilinear technique is more specialized for multi-soliton integrable systems, MKM
has a wider range of applications [10]. Compared with the tanh-coth technique, MKM is more flexible
and offers a wider range of solution types than merely hyperbolic solutions [10]. Compared with the
Exp-function approach, MKM offers more solution types and is not restricted to exponential
forms [11].

While HPM is better suited for approximate solutions and perturbative analysis, MKM offers
accurate solutions [12]. While Lie group analysis offers deeper insights into the structure of the
equation through symmetries, MKM is more useful for discovering accurate solutions immediately [8].

AIMS Mathematics Volume 10, Issue 2, 3291-3305.



3293

When looking for precise, closed-form solutions, the MKM stands out for its adaptability and
simplicity in solving both integrable and nonintegrable equations [3,4]. While it may not reveal as
much about the soliton structure or symmetry features of the equation as some other methods, it is very
good at discovering rational and single solutions [3,4].

The HRE is a nonlinear PDE that is primarily studied in the field of soliton theory and integrable
systems. In the framework of integrable equations that admit exact solutions, it was found by R. Hirota
and A. Ramani that solitons are stable, locally distributed wave packets that hold their shape during
propagation [6].

Wave propagation phenomena are connected to the HRE. In physics, soliton equations are used
to characterize different kinds of waves that propagate over space without dispersing, including waves
in water, light in optical fibers, or sound in specific media. Soliton solutions in mathematics arise from
a delicate equilibrium between dispersion, which refers to the phenomenon where different wave
frequencies propagate at varying velocities, and nonlinearity, which indicates that the amplitude of a
wave influences its speed or shape. Like other integrable models, the HRE captures a specific nonlinear
interaction that maintains the wave across time. Usually, unique mathematical methods like the inverse
scattering transform, Bécklund transformations, or Hirota's bilinear method are used to find its
solutions. These instruments aid in the precise determination of multi-soliton solutions, which depict
the interplay of multiple solitons. As a member of the integrable PDEs, the HRE is used in many
different domains. Nonlinear Schrédinger-type equations, which are connected to the HRE, explain
how light pulses can generate non-dispersive, persistent solitons in optical fibers. For long-distance
communication networks, these solitons are essential. The HRE can represent internal waves in
stratified fluids or shallow water waves, much like the Korteweg-de Vries (KdV) equation. Waveforms
that are steady and move without releasing energy are known as soliton appearances. In plasma
environments, where charged particles interact to propagate waves, solitonic structures arise.
Nonlinear wave equations are useful for modeling phenomena like Langmuir waves and ion-acoustic
waves. In the field of integrable systems research, the HRE aids in the comprehension of the intricate
mathematical structures that provide precise solutions. Solitons of such systems show how nonlinearity
and dispersion can coexist in a stable way; they are frequently characterized by an unlimited number
of conserved quantities [13—17].

In this paper, we analyse the HRE [13]

Up — Uyye + rux(l - ut) =0, (1)

where 7 # 0 and u(x,t) is the amplitude of related to the wave mode; u(x,t) represents wave
amplitude, particle density, or another field quantity. The term of u, is essential in describing the
time-dependent behavior of the wave. It indicates that the system evolves dynamically rather than
being static. The term of —u,,, reflects the influence of dispersion on the temporal evolution of the
wave. In optics, it could describe group velocity dispersion, while in fluid dynamics, it represents the
dispersive nature of shallow water waves or ion-acoustic waves in plasma. The nonlinear term
ru,(1 —u,) combines the spatial derivative of the wave u, with a term that is dependent on u,.
The parameter r controls the strength of this nonlinearity. This term represents the interaction
between the wave's spatial gradient (u,) and its temporal evolution (1 — u;). The term ru, reflects
the influence of the spatial gradient on the system, often linked to nonlinear steepening or amplification
of waves. The term of 1 — u; acts as a modulation factor, dynamically adjusting the strength of the
nonlinearity based on the wave's temporal behavior.
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The exp-function approach was used to solve the HRE, and several traveling soliton solutions
were obtained [18]. The inverse scattering method can be used to completely integrate this equation.

!

Eq (1) was analyzed in [19], resulting in the discovery of novel solutions. In [20], the (%)- expansion

approach was introduced as a means to generate precise traveling solutions for the HRE. The HRE
finds extensive use in several fields of physics, including plasma physics, fluid physics, and quantum
field theory. Furthermore, it elucidates a diverse range of wave phenomena in both plasma and solid
states [20]. The Lie symmetry method has been utilized to analyze the HRE [20]. There are distinct
methods to solve PDEs in the literature [21-26].

In this study, the MKM is applied for the first time to obtain exact solutions of the HRE. The work
introduces an innovative approach by developing a generalized ansatz tailored to the complex structure
of the equation, enabling the derivation of novel solutions that have not been previously reported in
the literature. Furthermore, the solutions obtained encompass a broader parameter range, enhancing
the applicability of the equation in physical models.

The subsequent sections of the paper are structured in the following manner: The core concept of
the MKM is introduced in Section 2. The traveling wave solutions of the HRE are shown in Section 3.
The conclusion is presented in Section 4.

2. Modified Kudryashov method

We consider the general PDE of the following formula [27-30]:
G (U, Uy, Up, Ugery Uggy - ) = 0, ()

where G represents the polynomial and derivatives of u = u(x, t), which comprises the nonlinear
terms and the highest-order derivatives.

First step

We analyze the traveling wave solutions of Eq (2) with the the traveling wave transform

u(x,t) =u(é), & =cx + kt, (3)

where c is the frequency of the wave and k is the height of the wave. If we substitute the derivative
terms obtained from the wave transform in the PDE (2), the general form of the following nonlinear
ordinary differential equation is obtained:

H(u,u',u"”,..)=0. 4

Differentiation of u with respect to ¢ in Eq (4).
Second step
We propose that the exact solutions of Eq (4) can be expressed in the following manner:

Yoa P (é)
u(é) = IL\,,O;J-, &)
Y=o bj¥7 (§)
where a; (i =0,1,..,N),b; j =0,1,..,M),¥ = ﬁ and the function ¥ is the solution of the

equation
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d¥
@ P2 - (). (6)

Third step
According to the method, we suppose that the solution of Eq (4) can be represented in the form

ap+ ¥ + a2+ +ayPh + -
by + by ¥ + b, W2 4 -+ by PM 4 -

u(§) = (7)

To determine the values M and N in (7), which represent the pole orders for the general solution
of (4), we employ the classical Kudryashov approach by balancing the highest-order nonlinear terms
in (4), thereby deriving formulas for M and N. Thus, we can obtain certain values of M and N.

Fourth step

Substituting (5) into (4) produces a polynomial R(¥) in terms of ¥. By setting the coefficients
of R(¥) to zero, we obtain a system of algebraic equations. By resolving this system, we can
describe the variable coefficients ay, a4, a,, ..., ay, by, b1, by, ..., and by,. Thus, we can ascertain the
exact solutions to (4).

The derived solutions may rely on rational, trigonometric, and hyperbolic functions.

3. Application

Using the method that was first presented by Hirota and Ramani, the goal of this part is to derive
analytic wave solutions to the HRE in Eq (1).

The HRE is a nonlinear dispersive equation and plays a critical role in understanding the dynamics
of nonlinear wave interactions in various physical systems. This equation is particularly useful for
investigating moving frames and preserving essential conservation laws within discrete systems.

For solving this nonlinear equation, it is first reduced it to a nonlinear ordinary differential
equation utilizing the following wave transform:

u(x, t) =u(é), & =kx +ct, (8)

where ¢ is the frequency of the wave and k is the height of the wave.
Substituting the necessary derivative terms are obtained by wave transform (8) in Eq (1) yields

(c +rk)u’ — kc®u'" —rck(u')? = 0. 9)

Substituting (5) into (9) and balancing the highest-order nonlinear term in terms of (u')%?and u'”
in (9), we obtain

N—-M+2=2N-2M=>N=M +2. (10)

For M = 1, we have N = 3. In this case, the solution function of this equation examined in
Eq (5) is as follows:

o AP (E)  Ag + AW+ AW+ AP
=0 B¥I (§) B, + B,¥

u($) = : (11)
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where A; (i = 0,1,2,3), B; (j = 0,1) are constants.

Equation (11) is used to generate the derivative terms in Eq (9). The algebraic equations which
consists of the coefficients of ¥ are established when each of these scenarios is realized and expressed
in its appropriate form. After this algebraic system of equations is solved, the coefficients in Eq (11)
can be found. It is assumed that these coefficients are substituted in the solution function. The ability
of the solution functions to produce the mathematical model is verified. Lastly, graphs simulating the
behavior of the discovered solution functions with suitable parameters are produced.

Case 1:
kB, A;  6kB, 6kB, T3 kr

B e R I Sl pr)

According to the coefficients found, the moving solution functions of the mathematical
expression are presented below.

/ k (ct + kx — 6arcTanh [Tanh [% (ct + kx)]l + 6Tanh [% (ct + kx)])\
uq(x,t) = k or )r (12)

k (ct + kx — 3Coth [% (ct + kx)])

up(x,t) = — - : (13)

Since the solutions found for u;; and u;, are the hyperbolic, trigonometric and rational
functions, they have the feature of being periodic functions. The periodicity signifies that the system
has a repetitive nature, which allows for predictions of future behavior based on previous patterns.

Uyt

Uy gixt
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Figure 1. The 2D, 3D, density, contour graphs of Eqs (12) and (13) for k = —1,B, =
0.24,r = 0.75,A3 = 3,4, = 0.32,A;, = —1.42,4, = —1.08,B; = 0.375,c = 0.375,
and t = 1.

The solutions to (12) and (13) include the parameters c, k, r, Ay, 41, 4,, A3, By, and B;. For

the values of the frequency of the wave ¢ = 0.375 and the parameters k = —1,r = 0.75,4, =
0.32,4; = —1.42, A, = —-1.08,B, = 0.24, and B; = 0.375, the kink shape and singular kink

AIMS Mathematics Volume 10, Issue 2, 3291-3305.
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solutions were acquired. The kink shape soliton in Figure 1 for u; 1(x,t) descends from left to right.
In Figure 1, the three-dimensional (3D), density, and contour graphs for u, 1 (x,t) and u, ,(x,t) have
been demonstrated within the interval —6 < x < 8,—0.3 <t < 0.3. From the behavior of the
solution uy ,(x,t) in Figure 1, it is seen that it is a singular kink soliton. The two-dimensional (2D)
graph in Figure 1 shows the solutions uy ;(x,t) and uy,(x,t) for t = 1.

Case 2:

6kB, 6kB, rAs kr

AO—)O,Al—) A2—>—A3—T,Bl= @, C—>_1—+kz.

According to the coefficients found, the moving solution functions of the mathematical
expression are presented below.

3kTanh [% (ct + kx)]

Uy, (x,t) = - , (14)
3kCoth [% (ct + kx)]

(%, 8) = - . (15)

The solutions of u,; and u,, have the property of being periodic functions, since they are the
hyperbolic, trigonometric, and rational functions. The system's periodicity indicates its repeating
character, allowing for the prediction of future behavior based on previous trends.

Tl gt

Uy it
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Uz x

Figure 2. The 2D, 3D, density, contour graphs of Eqs (14) and (15) for k = —2,B, =
0.24,r =0.75,A; = 3,4, = 0,4, = —3.84,4, = 0.84,B, = 0.1875,c = —0.5, and
t=1.

Similarly, the solutions to (14) and (15) include the parameters ¢, k, r, Ay, A1, Az, A3, By,

and B;. For the values of the frequency of the wave ¢ = —0.5 and the parameters k = —2,r =
0.75,4p =0, A; = —3.84,4, = 0.84,4; = 3,B, = 0.24, and B; = 0.1875, the kink shape and

AIMS Mathematics Volume 10, Issue 2, 3291-3305.
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singular kink solutions were obtained. The kink soliton in Figure 2 for u,4(x,t) descends from left
to right. In Figure 2, the three-dimensional (3D), density, contour graphs for u,;(x,t) and u,,(x,t)
have been indicated within the interval —6 < x < 8,—0.3 <t < 0.3. From the behavior of the
solution u,,(x,t) in Figure 2, it is seen that it is a singular kink soliton. The two-dimensional (2D)
graph in Figure 2 shows the solutions u,4(x,t) and u,,(x,t) for t = 1.

Case 3:

As A5 T
?,Az - _A3,BO s O,B]_ =—,C _)_,k == _1

A 0,4
0™ 1™ 3 )

According to the coefficients found, the moving solution functions of the mathematical
expression are presented below.

ct + kx — 3Tanh [% (ct + kx)]

us 4 (x, t) = " , (16)

ct + kx — 3Coth [% (ct + kx)]

r

(17)

ug,(x,t) =

Since the solutions of uz; and us, are hyperbolic, trigonometric, and rational, they have the
characteristic of being periodic functions. Because of the system's periodicity, which denotes its
repeating nature, future behavior can be predicted using previous behaviors.

Uy yix.)

Uy yi)
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Figure 3. The 2D, 3D, density, and contour graphs of Eqs (16) and (17) for k = —1,B, =
0,7=0.75,43 = 3,4, =0,4;, = 05,4, = —3,B; = 0.375,¢ = 0.375, and t = 1.

Moreover, the solutions of (16) and (17) include the parameters c, k, r, Ay, A1, Ay, A3, By,
and B;. For the values of the frequency of the wave ¢ = 0.375 and the parameters k = —1,r =

AIMS Mathematics Volume 10, Issue 2, 3291-3305.
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0.75,A0 =0, A4, =05,4, =—-3,4; =3,B, =0, and B; = 0.375, it produces the smooth kink
soliton and the singular kink solution, respectively. Figure 3 for uz;(x,t) indicates the smooth kink
soliton. From the behavior of the solution u3,(x,t) in Figure 3, it is observed that it is a singular kink
soliton. In Figure 3, the 3D, density and contour graphs for usz;(x,t) and us,(x,t) have been
demonstrated within the interval —6 < x < 8,—0.3 <t < 0.3. The 2D graph in Figure 3 indicates
the solutions uz;(x,t) and usz,(x,t) for t = 1.

The exact solutions of the HRE derived using the modified Kudryashov method in three separate
cases provide deep insights into the behavior of nonlinear wave phenomena in various physical
systems. The HRE, an important tool in nonlinear evolution equations, governs the dynamics of
complex wave interactions, which often involve the interaction of dispersion and nonlinearity. Using
the modified Kudryashov method, an effective and systematic approach to obtain exact solutions, this
study reveals the delicate balance between these competing effects. The obtained solutions are
interpreted as representing stable, localized wave structures such as solitons that maintain their shape
during propagation and rogue waves that exhibit extreme amplitudes and are of particular interest in
nonlinear optics, fluid dynamics, and plasma physics. These wave structures are crucial for
understanding wave propagation in nonlinear media as they reveal the conditions necessary for their
formation, stability, and continuity. This study advances our understanding of nonlinear wave
dynamics and provides a solid foundation for further research in various scientific fields such as plasma
physics, nonlinear optics, and fluid mechanics.

Therefore, the values of the parameters acquired via Mathematica 13.1 in Case 1, Case 2 and
Case 3 provide acceptable innovative solutions.

4. Conclusions

In this study, modified Kudryashov method has efficiently been applied to obtain the exact
solutions to the nonlinecar HRE. We have derived novel rational, trigonometric, and hyperbolic
function solutions for the HRE, differing from earlier published solutions [9,14—17,19,20]. It has
improved diverse sorts of exact solitary wave solutions, namely kink, singular kink and smooth kink
solitons, which are the types of solitons obtained via the modified Kudryashov method. The solutions
are determined and discussed in relation to hyperbolic and trigonometric functions with important
applications in fluid dynamics, nonlinear optics, etc. In actuality, solitary solutions capture a wide
range of essential characteristics, including weak shock waves in plasmas, the propagation of waves
in an elastic tube filled with liquid, the distribution of electromagnetic pulses in nonlinear optical fibers,
and the stability of the Stokes wave in water. By giving the indefinite parameters concrete values, 3D
and 2D graphs have been presented to ensure the accuracy of the results. The primary benefit of this
method is that it uses an applied technique that is straightforward and useful for analyzing nonlinear
evolution equations, compatible with symbolic computation, and yields. This approach is easy to
implement and understand. Furthermore, it has a high degree of ability to construct the analytical
solutions that are crucial for interpreting the nonlinear events connected to various scientific and
technological areas. In the future, the following types of studies can be done: Exploring more complex
solutions of the HRE, extending the method to higher-dimensional systems, performing stability
analysis, comparisons with numerical simulations, studying generalized or coupled systems, applying
the equation to physical models, and further developing analytical techniques. These efforts may

AIMS Mathematics Volume 10, Issue 2, 3291-3305.
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deepen the understanding of nonlinear wave phenomena and open up new applications in various fields
of physics and engineering.
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