The current study employs a transformation-based analytical technique, namely Riccati modified extended simple equation method (RMESEM) to construct and examine soliton phenomena in a prominent $ (2+1) $-dimensional mathematical model namely Nizhnik-Novikov-Veselov system (NNVS), which has potential applications in exponentially localized structure interactions. The suggested RMESEM uses a variable transformation to turn the desired NNVS into a nonlinear ordinary differential equation (NODE). The resulting NODE is then assumed to have a closed-form solution, converting it into an algebraic system of equations. When the resulting algebraic system is dealt with RMESEM's strategy using Maple, a range of dark and bright soliton solutions in the form of rational, exponential, periodic, hyperbolic and rational-hyperbolic functions are revealed. Some 3D, contour and 2D graphs are plotted for visual representations of these soliton solutions that demonstrate their versatility. The findings deepen our understanding of the NNVS's dynamics, shedding light on its behavior and potential uses.
Citation: Naveed Iqbal, Meshari Alesemi. Soliton dynamics in the $ (2+1) $-dimensional Nizhnik-Novikov-Veselov system via the Riccati modified extended simple equation method[J]. AIMS Mathematics, 2025, 10(2): 3306-3333. doi: 10.3934/math.2025154
The current study employs a transformation-based analytical technique, namely Riccati modified extended simple equation method (RMESEM) to construct and examine soliton phenomena in a prominent $ (2+1) $-dimensional mathematical model namely Nizhnik-Novikov-Veselov system (NNVS), which has potential applications in exponentially localized structure interactions. The suggested RMESEM uses a variable transformation to turn the desired NNVS into a nonlinear ordinary differential equation (NODE). The resulting NODE is then assumed to have a closed-form solution, converting it into an algebraic system of equations. When the resulting algebraic system is dealt with RMESEM's strategy using Maple, a range of dark and bright soliton solutions in the form of rational, exponential, periodic, hyperbolic and rational-hyperbolic functions are revealed. Some 3D, contour and 2D graphs are plotted for visual representations of these soliton solutions that demonstrate their versatility. The findings deepen our understanding of the NNVS's dynamics, shedding light on its behavior and potential uses.
[1] |
M. Aldandani, A. A. Altherwi, M. M. Abushaega, Propagation patterns of dromion and other solitons in nonlinear Phi-Four ($ \phi^4 $) equation, AIMS Math., 9 (2024), 19786–19811. https://doi.org/10.3934/math.2024966 doi: 10.3934/math.2024966
![]() |
[2] |
R. Qahiti, N. M. A. Alsafri, H. Zogan, A. A. Faqihi, Kink soliton solution of integrable Kairat-X equation via two integration algorithms, AIMS Math., 9 (2024), 30153–30173. https://doi.org/10.3934/math.20241456 doi: 10.3934/math.20241456
![]() |
[3] |
M. Y. Almusawa, H. Almusawa, Exploring the diversity of kink solitons in $(3+1)$-dimensional Wazwaz-Benjamin-Bona-Mahony equation, Mathematics, 12 (2024), 3340. https://doi.org/10.3390/math12213340 doi: 10.3390/math12213340
![]() |
[4] |
M. N. Alshehri, S. Althobaiti, A. Althobaiti, R. I. Nuruddeen, H. S. Sambo, A. F. Aljohani, Solitonic analysis of the newly introduced three-dimensional nonlinear dynamical equations in fluid mediums, Mathematics, 12 (2024), 3205. https://doi.org/10.3390/math12203205 doi: 10.3390/math12203205
![]() |
[5] |
H. Khan, R. Shah, J. F. Gómez-Aguilar, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Phenom., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
![]() |
[6] |
G. F. Yu, H. W. Tam, A vector asymmetrical NNV equation: soliton solutions, bilinear Bäcklund transformation and Lax pair, J. Math. Anal. Appl., 344 (2008), 593–600. https://doi.org/10.1016/j.jmaa.2008.02.057 doi: 10.1016/j.jmaa.2008.02.057
![]() |
[7] | M. A. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998 |
[8] | V. Matveev, M. A. Salle, Darboux transformations and solitons, Vol. 17, Berlin: Springer, 1991. |
[9] |
B. Q. Li, Y. L. Ma, Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials, J. Supercond. Nov. Magn., 31 (2018), 1773–1778. https://doi.org/10.1007/s10948-017-4406-9 doi: 10.1007/s10948-017-4406-9
![]() |
[10] |
B. Li, Y. Ma, The non-traveling wave solutions and novel fractal soliton for the $(2+ 1)$-dimensional Broer-Kaup equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 144–149. https://doi.org/10.1016/j.cnsns.2010.02.011 doi: 10.1016/j.cnsns.2010.02.011
![]() |
[11] |
Y. L. Ma, B. Q. Li, Y. Y. Fu, A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Methods Appl. Sci., 41 (2018), 3316–3322. https://doi.org/10.1002/mma.4818 doi: 10.1002/mma.4818
![]() |
[12] |
Y. Ma, B. Li, C. Wang, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036
![]() |
[13] |
B. Q. Li, Y. L. Ma, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144 (2017), 149–155. https://doi.org/10.1016/j.ijleo.2017.06.114 doi: 10.1016/j.ijleo.2017.06.114
![]() |
[14] |
M. Zhang, Y. L. Ma, B. Q. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. https://doi.org10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511
![]() |
[15] |
B. Q. Li, Y. L. Ma, Multiple-lump waves for a $(3+ 1)$-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204–214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015
![]() |
[16] |
M. S. Osman, Nonlinear interaction of solitary waves described by multi-rational wave solutions of the $(2 + 1)$-dimensional Kadomtsev-Petviashvili equation with variable coefficientss, Nonlinear Dyn., 87 (2017), 1209–1216. https://doi.org/10.1007/s11071-016-3110-9 doi: 10.1007/s11071-016-3110-9
![]() |
[17] |
H. I. Abdel-Gawad, Towards a unified method for exact solutions of evolution equations. An application to reaction diffusion equations with finite memory transport, J. Stat. Phys., 147 (2012), 506–518. https://doi.org/10.1007/s10955-012-0467-0 doi: 10.1007/s10955-012-0467-0
![]() |
[18] |
C. F. Wei, New solitary wave solutions for the fractional Jaulent-Miodek hierarchy model, Fractals, 31 (2023), 2350060. https://doi.org/10.1142/S0218348X23500603 doi: 10.1142/S0218348X23500603
![]() |
[19] |
S. M. Mirhosseini-Alizamini, H. Rezazadeh, K. Srinivasa, A. Bekir, New closed form solutions of the new coupled Konno-Oono equation using the new extended direct algebraic method, Pramana, 94 (2020), 52. https://doi.org/10.1007/s12043-020-1921-1 doi: 10.1007/s12043-020-1921-1
![]() |
[20] |
N. A. Kudryashov, Seven common errors in finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3507–3529. https://doi.org/10.1016/j.cnsns.2009.01.023 doi: 10.1016/j.cnsns.2009.01.023
![]() |
[21] |
Z. Navickas, M. Ragulskis, Comments on "A new algorithm for automatic computation of solitary wave solutions to nonlinear partial differential equations based on the Exp-function method", Appl. Math. Comput., 243 (2014), 419–425. https://doi.org/10.1016/j.amc.2014.06.029 doi: 10.1016/j.amc.2014.06.029
![]() |
[22] |
A. O. Antonova, N. A. Kudryashov, Generalization of the simplest equation method for nonlinear non-autonomous differential equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4037–4041. https://doi.org/10.1016/j.cnsns.2014.03.035 doi: 10.1016/j.cnsns.2014.03.035
![]() |
[23] |
Z. Navickas, R. Marcinkevicius, I. Telksniene, T. Telksnys, M. Ragulskis, Structural stability of the hepatitis $C$ model with the proliferation of infected and uninfected hepatocytes, Math. Comput. Model. Dyn. Syst., 30 (2024), 51–72. https://doi.org/10.1080/13873954.2024.2304808 doi: 10.1080/13873954.2024.2304808
![]() |
[24] |
Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
![]() |
[25] |
Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
![]() |
[26] |
Y. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov's equation with third-order dispersion, Nonlinear Dyn., 112 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
![]() |
[27] |
J. Xie, Z. Xie, H. Xu, Z. Li, W. Shi, J. Ren, et al., Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom, Chaos Soliton. Fract., 187 (2024), 115440. https://doi.org/10.1016/j.chaos.2024.115440 doi: 10.1016/j.chaos.2024.115440
![]() |
[28] |
M. S. Iqbal, A. R. Seadawy, M. Z. Baber, Demonstration of unique problems from Soliton solutions to nonlinear Selkov-Schnakenberg system, Chaos Soliton. Fract., 162 (2022), 112485. https://doi.org/10.1016/j.chaos.2022.112485 doi: 10.1016/j.chaos.2022.112485
![]() |
[29] |
M. S. Alber, R. Camassa, D. D. Holm, J. E. Marsden, On the link between umbilic geodesics and soliton solutions of nonlinear PDEs, Proc. R. Soc. London. Ser. A: Math. Phys. Sci., 450 (1995), 677–692. https://doi.org/10.1098/rspa.1995.0107 doi: 10.1098/rspa.1995.0107
![]() |
[30] |
W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simul., 43 (1997), 13–27. https://doi.org/10.1016/S0378-4754(96)00053-5 doi: 10.1016/S0378-4754(96)00053-5
![]() |
[31] |
Z. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a $(2+ 1)$-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Mod. Phys. Lett. B, 31 (2017), 1750157. https://doi.org/10.1142/S0217984917501573 doi: 10.1142/S0217984917501573
![]() |
[32] |
W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 379 (2015), 1975–1978. https://doi.org/10.1016/j.physleta.2015.06.061 doi: 10.1016/j.physleta.2015.06.061
![]() |
[33] |
J. Y. Yang, W. X. Ma, Lump solutions to the BKP equation by symbolic computation, Int. J. Mod. Phys. B, 30 (2016), 1640028. https://doi.org/10.1142/S0217979216400282 doi: 10.1142/S0217979216400282
![]() |
[34] |
M. A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Soliton. Fract., 13 (2002), 1917–1929. https://doi.org/10.1016/S0960-0779(01)00189-8 doi: 10.1016/S0960-0779(01)00189-8
![]() |
[35] |
N. C. Freeman, Soliton solutions of non-linear evolution equations, IMA J. Appl. Math., 32 (1984), 125–145. https://doi.org/10.1093/imamat/32.1-3.125 doi: 10.1093/imamat/32.1-3.125
![]() |
[36] |
S. Javeed, K. Saleem Alimgeer, S. Nawaz, A. Waheed, M. Suleman, D. Baleanu, et al., Soliton solutions of mathematical physics models using the exponential function technique, Symmetry, 12 (2020), 176. https://doi.org/10.3390/sym12010176 doi: 10.3390/sym12010176
![]() |
[37] |
Z. Y. Wang, S. F. Tian, J. Cheng, The $\partial^{-}$-dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021), 093510. https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
![]() |
[38] |
S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
![]() |
[39] |
Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the $n$-component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
![]() |
[40] |
Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of $N$-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
![]() |
[41] | T. Aktürk, Ç. Kubal, Analysis of wave solutions of $(2+ 1)$-dimensional Nizhnik-Novikov-Veselov equation, Ordu Univ. J. Sci. Tecnol., 11 (2021), 13–24. |
[42] |
P. G. Estévez, S. Leble, A wave equation in $2+ 1$: Painlevé analysis and solutions, Inverse Probl., 11 (1995), 925. https://doi.org10.1088/0266-5611/11/4/018 doi: 10.1088/0266-5611/11/4/018
![]() |
[43] |
Y. Ren, H. Zhang, New generalized hyperbolic functions and auto-Bácklund transformation to find new exact solutions of the $(2+ 1)$-dimensional NNV equation, Phys. Lett. A, 357 (2006), 438–448. https://doi.org/10.1016/j.physleta.2006.04.082 doi: 10.1016/j.physleta.2006.04.082
![]() |
[44] | L. P. Nizhnik, Integration of multidimensional nonlinear equations by the method of the inverse problem, Doklady Akademii Nauk, Russian Academy of Sciences, 254 (1980), 332–335. |
[45] |
M. B. Hossen, H. O. Roshid, M. Z. Ali, Multi-soliton, breathers, lumps and interaction solution to the $(2+ 1)$-dimensional asymmetric Nizhnik-Novikov-Veselov equation, Heliyon, 5 (2019), e02548. https://doi.org/10.1016/j.heliyon.2019.e02548 doi: 10.1016/j.heliyon.2019.e02548
![]() |
[46] |
M. S. Osman, H. I. Abdel-Gawad, Multi-wave solutions of the $(2+ 1)$-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. J. Plus, 130 (2015), 215. https://doi.org/10.1140/epjp/i2015-15215-1 doi: 10.1140/epjp/i2015-15215-1
![]() |
[47] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
![]() |