Processing math: 100%
Research article

Characterization of solitons in a pseudo-quasi-conformally flat and pseudo- W8 flat Lorentzian Kähler space-time manifolds

  • Received: 02 May 2024 Revised: 30 May 2024 Accepted: 05 June 2024 Published: 13 June 2024
  • MSC : 35C08, 53C50, 53C55

  • The present paper dealt with the study of solitons of Lorentzian Kähler space-time manifolds. In this paper, we have discussed different conditions for solitons to be steady, expanding, or shrinking in terms of isotropic pressure, the cosmological constant, energy density, nonlinear equations, and gravitational constant in pseudo-quasi-conformally flat and pseudo-W8 flat Lorentzian Kähler space-time manifolds.

    Citation: B. B. Chaturvedi, Kunj Bihari Kaushik, Prabhawati Bhagat, Mohammad Nazrul Islam Khan. Characterization of solitons in a pseudo-quasi-conformally flat and pseudo- W8 flat Lorentzian Kähler space-time manifolds[J]. AIMS Mathematics, 2024, 9(7): 19515-19528. doi: 10.3934/math.2024951

    Related Papers:

    [1] Ayman Elsharkawy, Hoda Elsayied, Abdelrhman Tawfiq, Fatimah Alghamdi . Geometric analysis of the pseudo-projective curvature tensor in doubly and twisted warped product manifolds. AIMS Mathematics, 2025, 10(1): 56-71. doi: 10.3934/math.2025004
    [2] Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085
    [3] Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Khalid Masood . Geometrization of string cloud spacetime in general relativity. AIMS Mathematics, 2023, 8(12): 29042-29057. doi: 10.3934/math.20231487
    [4] Yanlin Li, Aydin Gezer, Erkan Karakaş . Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics, 2023, 8(8): 17335-17353. doi: 10.3934/math.2023886
    [5] Rajesh Kumar, Sameh Shenawy, Lalnunenga Colney, Nasser Bin Turki . Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds. AIMS Mathematics, 2024, 9(11): 30364-30383. doi: 10.3934/math.20241465
    [6] Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya . Conformal $ \eta $-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Mathematics, 2022, 7(4): 5408-5430. doi: 10.3934/math.2022300
    [7] Samah Gaber, Abeer Al Elaiw . Evolution of null Cartan and pseudo null curves via the Bishop frame in Minkowski space $ \mathbb{R}^{2, 1} $. AIMS Mathematics, 2025, 10(2): 3691-3709. doi: 10.3934/math.2025171
    [8] Meraj Ali Khan, Ali H. Alkhaldi, Mohd. Aquib . Estimation of eigenvalues for the $ \alpha $-Laplace operator on pseudo-slant submanifolds of generalized Sasakian space forms. AIMS Mathematics, 2022, 7(9): 16054-16066. doi: 10.3934/math.2022879
    [9] Fahad Sikander, Tanveer Fatima, Sharief Deshmukh, Ayman Elsharkawy . Curvature analysis of concircular trajectories in doubly warped product manifolds. AIMS Mathematics, 2024, 9(8): 21940-21951. doi: 10.3934/math.20241066
    [10] Aliya Naaz Siddiqui, Mohammad Hasan Shahid, Jae Won Lee . On Ricci curvature of submanifolds in statistical manifolds of constant (quasi-constant) curvature. AIMS Mathematics, 2020, 5(4): 3495-3509. doi: 10.3934/math.2020227
  • The present paper dealt with the study of solitons of Lorentzian Kähler space-time manifolds. In this paper, we have discussed different conditions for solitons to be steady, expanding, or shrinking in terms of isotropic pressure, the cosmological constant, energy density, nonlinear equations, and gravitational constant in pseudo-quasi-conformally flat and pseudo-W8 flat Lorentzian Kähler space-time manifolds.



    The relativistic fluid models being involved in the study of different branches of physics, like astrophysics and plasma physics. According to general relativity, a perfect fluid space-time is a four-dimensional Riemannian manifold with Lorentzian metric g. For the study of idealized distribution of matter, such as the interior of a star or an isotropic pressure, we use perfect fluid in cosmology. The behavior of a perfect fluid inside a spherical object is described by Einstein's field equation. A perfect fluid is said to be a radiation fluid if its mass density ψ is three times that of the isotropic pressure p. O'Neill in 1983 studied the properties of semi-Riemannian geometry in relativity theory [23]. Also, Kaigorodov [19] studied the structure of space-time curvature. Later on, different differential geometers [1,6,9,12,30] extended their study to the curvature structure of space-time. In 2020, Panday and Chaturvedi [24] studied Lorentzian complex space form. In the fields of soliton theory, theory of relativity, and related topics, numerous geometers have investigated geometric and topological characteristics concerning symmetry. Their works from references [2,14,17,18] are a great place to start when looking for ideas and a desire to learn more about symmetry. The Ricci solitons and Einstein solitons generate self-similar solutions to partial differential equations. Ricci flow [16] and Einstein flow [5] are defined as

    gt=2Sandgt=2(Sr2g), (1.1)

    respectively, where S is the Ricci tensor, g is the Riemannian metric, and r is the scalar curvature. Solitons are waves that travel across space with little energy loss and maintain their shape and speed even after colliding with other waves of the same type. The trajectory of wave transmission is characterized by nonlinear partial differential equations. The concept of η-Ricci soliton was given by Cho and Kimura [11]. An η-Ricci soliton equation is given by

    Lξg+2S+2ug+2vηη=0, (1.2)

    for real constants u and v, where g, S, and ξ denote pseudo-Riemannian metric, Ricci curvature, and vector field, respectively, and η is a 1-form. The data (g,ξ,u,v) that satisfies Eq (1.2) is called η-Ricci solitons. If v=0, then the data (g,ξ,u) is called Ricci soliton [16]. It is referred to as shrinking, steady, or expanding according to whether u is zero, positive, or negative, accordingly [10].

    The Lie derivative of g(π1,π2) with respect to ξ is given by

    (Lξg)(π1,π2)=g(π1ξ,π2)+g(π1,π2ξ). (1.3)

    With the help of differential Eq (1.3), Eq (1.2) can be written as

    S(π1,π2)=ug(π1,π2)vη(π1)η(π2)12[g(π1ξ,π2)+g(π1,π2ξ)], (1.4)

    for any π1,π2χ(M).

    The equation of the η-Einstein soliton is introduced by Blaga [3] in 2018 as follows:

    Lξg+2S+(2ur)g+2vηη=0, (1.5)

    where g,S,r,ξ,η,u, and v are stated as above. The data (g,ξ,u,v) that satisfies differential Eq (1.5) is called an η-Einstein soliton in M; for v=0, the data (g,ξ,u) is called an Einstein soliton [5].

    Using (1.3) in (1.5), we have

    S(π1,π2)=(ur2)g(π1,π2)vη(π1)η(π2)12[g(π1ξ,π2)+g(π1,π2ξ)], (1.6)

    for any π1,π2χ(M).

    Ricci soliton has been studied by Praveena and Bagewadi in [28,29], in which they obtained results in almost pseudo-symmetric Kähler manifolds. De et al. [13] in 2012 studied conformally flat almost pseudo-Ricci symmetric space-times. Ricci soliton associated with perfect fluid space-time has been discussed by Venkatesha et al. in [20,34]. In [32], Siddiqi and Siddiqi have discussed conformal Ricci soliton and geometrical structure in a perfect fluid space-time. Pratyay Debnath and Arabinada Konar studied [15] quasi-Einstein manifolds and quasi-Einstein space-times. In 2020, Blaga [4] studied solitons and geometrical structures in perfect fluid space-time. Recently, in 2023, Catuevedi et al. [8] studied the concept of solitons in Bochner Flat Lorentzian Kähler space-time manifold. These ideas motivated us to study the η-Ricci soliton and η-Einstein soliton in pseudo-quasi-conformally flat and pseudo-W8 flat Lorentzian Kähler space-time manifolds.

    A semi-Riemannian manifold (dim = n, even) (Mn,g) endowed with a Lorentzian metric g is referred to as a Lorentzian Kähler manifold if it satisfies the following conditions [24]:

    F2=I,g(Fπ1,Fπ2)=g(π1,π2),and(π1F)π2=0, (2.1)

    where F is a (1, 1) tensor field, I is an identity matrix, π1 and π2 are arbitrary differentiable vector fields, and is a Riemannian connection. We know that in a Lorentzian Kähler manifold, the following relation holds:

    R(π1,π2,π3,π4)=R(Fπ1,Fπ2,π3,π4)=R(π1,π2,Fπ3,Fπ4). (2.2)
    {S(π1,π2)=S(Fπ1,Fπ2),S(Fπ1,π2)=S(π1,Fπ2),g(Fπ1,π2)=g(π1,Fπ2). (2.3)

    We refer to a four-dimensional Lorentzian Kähler manifold as a Lorentzian Kähler space-time manifold. This assumption is taken into consideration throughout the study.

    The Einstein equation with cosmological constant for the perfect fluid space-time is as follows:

    S(π1,π2)=(λr2Kp)g(π1,π2)+K(ψ+p)η(π1)η(π2), (2.4)

    for any π1,π2χ(M), where p, ψ, λ, K, S, and r are the isotropic pressure, energy density, cosmological constant, gravitational constant, Ricci tensor, and scalar curvature, respectively. η is an associated 1-form such that η(ξ)=1, g is the metric tensor of minkowski space-time [22], and ξ is the velocity vector of the fluid. Here, the Ricci tensor S is the functional combination of g and ηη called quasi-Einstein [7].

    Consider an orthonormal frame field {Ei}1i4, that is, g(Ei,Ej)=ϵijδij, i,j{1,2,3,4} with ϵ11=1, ϵii=1, i{2,3,4}, ϵij=0, i,j{1,2,3,4}, ij.

    Let ξ=ni=1ξiEi, then we can write

    1=g(ξ,ξ)=1i,j4ξiξjg(Ei,Ej)=4i=1ϵii{ξi}2, (2.5)

    and

    η(Ei)=g(Ei,ξ)=4j=1ξig(Ei,Ej)=ϵiiξi. (2.6)

    Contracting Eq (2.4), we get

    r=4λ+K(ψ3p). (2.7)

    The Einstein equation without cosmological constant for perfect fluid space-time is as follows:

    S(π1,π2)=(r2+Kp)g(π1,π2)+K(ψ+p)η(π1)η(π2). (2.8)

    Now, contracting Eq (2.8), we have

    r=K(ψ3p). (2.9)

    In this section, we studied pseudo-quasi-conformal curvature tensor in a Lorentzian Kähler space-time manifold. In 2005, Shaikh and Jana [31] introduced and studied pseudo-quasi-conformal curvature tensor on Riemannian manifolds. Kundu and Prakash et al. [21,26] studied pseudo-quasi-conformal curvature tensor on P-sasakian manifolds. In 2021, Suh et al. [33], studied pseudo-quasi-conformal curvature tensor in space-times of general relativity.

    The pseudo-quasi-conformal curvature tensor is defined by:

    ˜V(π1,π2,π3,π4)=(α1+d)R(π1,π2,π3,π4)+(α2d3)[S(π2,π3)g(π1,π4)S(π1,π3)g(π2,π4)]+α2[g(π2,π3)S(π1,π4)g(π1,π3)S(π2,π4)]r12{α1+6α2}[g(π2,π3)g(π1,π4)g(π1,π3)g(π2,π4)], (3.1)

    where R is the curvature tensor, S is the Ricci tensor, ˜V(π1,π2,π3,π4)=g(˜V(π1,π2),π3,π4), and R(π1,π2,π3,π4)=g(R(π1,π2)π3,π4).

    If the manifold is pseudo-quasi-conformally flat, then from Eq (3.1), we can write

    (α1+d)R(π1,π2,π3,π4)+(α2d3)[S(π2,π3)g(π1,π4)S(π1,π3)g(π2,π4)]+α2[g(π2,π3)S(π1,π4)g(π1,π3)S(π2,π4)]r12{α1+6α2}[g(π2,π3)g(π1,π4)g(π1,π3)g(π2,π4)]=0. (3.2)

    Now, replacing π1 by Fπ1 and π2 by Fπ2 in Eq (3.2), we get

    (α1+d)R(Fπ1,Fπ2,π3,π4)+(α2d3)[S(Fπ2,π3)g(Fπ1,π4)S(Fπ1,π3)g(Fπ2,π4)]+α2[g(Fπ2,π3)S(Fπ1,π4)g(Fπ1,π3)S(Fπ2,π4)]r12{α1+6α2}[g(Fπ2,π3)g(Fπ1,π4)g(Fπ1,π3)g(Fπ2,π4)]=0. (3.3)

    Subtracting Eq (3.3) from Eq (3.2), we have

    (α1+d)[R(π1,π2,π3,π4)R(Fπ1,Fπ2,π3,π4)]+(α2d3)[S(π2,π3)g(π1,π4)S(π1,π3)g(π2,π4)S(Fπ2,π3)g(Fπ1,π4)+S(Fπ1,π3)g(Fπ2,π4)]+α2[g(π2,π3)S(π1,π4)g(π1,π3)S(π2,π4)g(Fπ2,π3)S(Fπ1,π4)+g(Fπ1,π3)S(Fπ2,π4)]r12{α1+6α2}[g(π2,π3)g(π1,π4)g(π1,π3)g(π2,π4)g(Fπ2,π3)g(Fπ1,π4)+g(Fπ1,π3)g(Fπ2,π4)]=0. (3.4)

    Now, using Eq (2.2) in Eq (3.4), we get

    (α2d3)[S(π2,π3)g(π1,π4)S(π1,π3)g(π2,π4)S(Fπ2,π3)g(Fπ1,π4)+S(Fπ1,π3)g(Fπ2,π4)]+α2[g(π2,π3)S(π1,π4)g(π1,π3)S(π2,π4)g(Fπ2,π3)S(Fπ1,π4)+g(Fπ1,π3)S(Fπ2,π4)]r12{α1+6α2}[g(π2,π3)g(π1,π4)g(π1,π3)g(π2,π4)g(Fπ2,π3)g(Fπ1,π4)+g(Fπ1,π3)g(Fπ2,π4)]=0. (3.5)

    Taking a frame field over π1 and π4 in Eq (3.5) and using Eqs (2.1) and (2.3), we get

    S(π2,π3)=rα14dg(π2,π3). (3.6)

    From Eqs (3.6) and (1.4), we get

    rα14dg(π2,π3)=ug(π2,π3)vη(π2)η(π3)12[g(π2ξ,π3)+g(π2,π3ξ)]. (3.7)

    Multiplying (3.7) by ϵii, taking π2=π3=Ei, and using Eqs (2.5) and (2.6), we get

    4uv=rα1d+4divξ. (3.8)

    Using Eq (2.7) in Eq (3.8), we get

    4uv=[4λ+K(ψ3p)]α1d+4divξ. (3.9)

    Now, putting π2=π3=ξ in (3.7), we get

    uv=r4α1d. (3.10)

    Again, using Eq (2.7) in Eq (3.10), we get

    uv=[λ+K4(ψ3p)]α1d. (3.11)

    From Eqs (3.9) and (3.11), we have

    u=[λ+K4(ψ3p)]α1d+43divξandv=4divξ3. (3.12)

    If v=0, then we get the Ricci soliton with u=[λ+K4(ψ3p)]α1d.

    This will be steady if u=0; therefore, from Eq (3.12), we get p=43λK+ψ3, or α1d=0.

    Shrinking if u<0, therefore, from Eq (3.12), we get p<43λK+ψ3, and α1d>0 or p>43λK+ψ3, and α1d<0.

    Expanding if u>0, therefore, from Eq (3.12), we get p>43λK+ψ3, and α1d>0 or p<43λK+ψ3, and α1d<0.

    Thus, we conclude:

    Theorem 3.1. Ricci soliton (g,ξ,u) in a pseudo-quasi-conformally flat Lorentzian Kähler space-time manifold with cosmological constant is:

    (i) steady: if p=43λK+ψ3 or α1d=0,

    (ii) shrinking: if p<43λK+ψ3, and α1d>0 or p>43λK+ψ3, and α1d<0,

    (iii) or expanding: if p>43λK+ψ3, and α1d>0 or p<43λK+ψ3, and α1d<0.

    Using Eqs (2.9) and (3.8), we get

    4uv=[K(ψ3p)]α1d+4divξ. (3.13)

    Using Eqs (2.9) and (3.10), we get

    uv=[K(ψ3p)4]α1d. (3.14)

    After calculating (3.13) and (3.14), we get

    u=[K(ψ3p)4]α1d+43divξandv=43divξ, (3.15)

    and if v=0, then we get the Ricci soliton with u=[K(ψ3p)4]α1d.

    This will be steady if u=0, therefore, from Eq (3.15), we get p=Kψ3 or α1d=0.

    Shrinking if u<0, therefore, from Eq (3.15), we get p<Kψ3, and α1d>0 or p>Kψ3, and α1d<0.

    Expanding if u>0, therefore, from Eq (3.15), we get p<Kψ3, and α1d<0 or p>Kψ3, and α1d>0.

    Thus, we conclude:

    Theorem 3.2. A Ricci soliton (g,ξ,u) in a pseudo-quasi-conformally flat Lorentzian Kähler space-time manifold without cosmological constant is:

    (i) steady: if p=Kψ3 or α1d=0,

    (ii) shrinking: if p<Kψ3, and α1d>0 or p>Kψ3, and α1d<0,

    (iii) or expanding: if p<Kψ3, and α1d<0 or p>Kψ3, and α1d>0.

    From Eqs (1.6) and (3.6), we obtain

    rα14dg(π2,π3)=(ur2)g(π2,π3)vη(π2)η(π3)12[g(π2ξ,π3)+g(π2,π3ξ)]. (3.16)

    Taking π2=π3=Ei, multiplying Eq (3.16) by ϵii, and using Eqs (2.5) and (2.6), we get

    4uv=r(α1d+2)+4divξ. (3.17)

    Using Eq (2.7) in Eq (3.17), we get

    4uv=[4λ+K(ψ3p)](α1d+2)+4divξ, (3.18)

    and taking π2=π3=ξ in Eq (3.16), we have

    uv=r4(α1d+2). (3.19)

    Again, using Eq (2.7) in Eq (3.19), we get

    uv=[λ+K4(ψ3p)](α1d+2). (3.20)

    From Eqs (3.18) and (3.20), we have

    u=[λ+K4(ψ3p)](α1d+2)+43divξandb=43divξ, (3.21)

    if v=0, then we get the Einstein soliton with u=[λ+K4(ψ3p)](α1d+2).

    This will be steady if u=0, therefore, from Eq (3.21), we get p=43λK+ψ3 or (α1d+2)=0.

    Shrinking if u<0, therefore, from Eq (3.21), we get p<43λK+ψ3, and (α1d+2)>0 or p>43λK+ψ3, and (α1d+2)<0.

    Expanding if u>0, therefore, from Eq (3.21), we get p>43λK+ψ3, and (α1d+2)>0 or p<43λK+ψ3, and (α1d+2)<0.

    Thus, we conclude:

    Theorem 3.3. An Einstein soliton (g,ξ,u) in a pseudo-quasi-conformally flat Lorentzian Kähler space-time manifold with cosmological constant is:

    (i) steady: if p=43λK+ψ3 or (α1d+2)=0,

    (ii) shrinking: if p<43λK+ψ3, and (α1d+2)>0 or p>43λK+ψ3, and (α1d+2)<0,

    (iii) or expanding: if p>43λK+ψ3 and (α1d+2)>0 or p<43λK+ψ3 and (α1d+2)<0.

    Using Eqs (2.9) and (3.17), we get

    4uv=K(ψ3p)(α1d+2)+4divξ. (3.22)

    Using Eqs (2.9) and (3.19), we get

    uv=K(ψ3p)4(α1d+2). (3.23)

    After calculating Eqs (3.22) and (3.23), we get

    u=K(ψ3p)4(α1d+2)+43divξandv=43divξ, (3.24)

    if v=0, then we obtain the Einstein soliton with u=K(ψ3p)4(α1d+2).

    This will be steady if u=0, therefore, from Eq (3.24), we get p=Kψ3 or (α1d+2)=0.

    Shrinking if u<0, therefore, from Eq (3.24), we get p<Kψ3, and (α1d+2)>0 or p>Kψ3, and (α1d+2)<0.

    Expanding if u>0, therefore, from Eq (3.24), we get p>Kψ3, and (α1d+2)>0 or p<Kψ3, and (α1d+2)<0.

    Thus, we conclude:

    Theorem 3.4. An Einstein soliton (g,ξ,u) in a pseudo-quasi-conformally flat Lorentzian Kähler space-time manifold without cosmological constant is:

    (i) steady: if p=Kψ3 or (α1d+2)=0,

    (ii) shrinking: if p<Kψ3, and (α1d+2)>0 or p>Kψ3, and (α1d+2)<0,

    (iii) or expanding: if p>Kψ3, and (α1d+2)>0 or p<Kψ3, and (α1d+2)<0.

    In this section, we studied the pseudo-W8 curvature tensor in Lorentzian Kähler space-time manifold. In 1982, Pokhariyal and Mishra [25] defined W8 curvature tensor. Later in 2018, Pandey et al. [27] gave the concept of the pseudo W8 curvature tensor on a Riemannian manifold. The pseudo-W8 curvature tensor is defined by:

    ~W8(π1,π2,π3,π5)=α1˜R(π1,π2,π3,π5)+α2[S(π1,π2)g(π3,π5)S(π2,π3)g(π1,π5)]rn[α1n1α2][g(π1,π2)g(π3,π5)g(π2,π3)g(π1,π5)]. (4.1)

    If the manifold is pseudo-W8 flat, then from Eq (4.1), we can write

    α1˜R(π1,π2,π3,π5)+α2[S(π1,π2)g(π3,π5)S(π2,π3)g(π1,π5)]r4[α13α2][g(π1,π2)g(π3,π5)g(π2,π3)g(π1,π5)]=0. (4.2)

    Now, replacing π1 by Fπ1 and π2 by Fπ2 in Eq (4.2), we get

    α1˜R(Fπ1,Fπ2,π3,π5)+α2[S(Fπ1,Fπ2)g(π3,π5)S(Fπ2,π3)g(Fπ1,π5)]r4[α13α2][g(Fπ1,Fπ2)g(π3,π5)g(Fπ2,π3)g(Fπ1,π5)]=0. (4.3)

    Subtracting Eq (4.3) from Eq (4.2), we have

    α1[˜R(π1,π2,π3,π5)˜R(Fπ1,Fπ2,π3,π5)]+α2[S(π1,π2)g(π3,π5)S(π2,π3)g(π1,π5)S(Fπ1,Fπ2)g(π3,π5)+S(Fπ2,π3)g(Fπ1,π5)]r4[α13α2][g(π1,π2)g(π3,π5)g(π2,π3)g(π1,π5)g(Fπ1,Fπ2)g(π3,π5)+g(Fπ2,π3)g(Fπ1,π5)]=0. (4.4)

    Using Eq (2.2) in Eq (4.4), we get

    α2[S(π1,π2)g(π3,π5)S(π2,π3)g(π1,π5)S(Fπ1,Fπ2)g(π3,π5)+S(Fπ2,π3)g(Fπ1,π5)]r4[α13α2][g(π1,π2)g(π3,π5)g(π2,π3)g(π1,π5)g(Fπ1,Fπ2)g(π3,π5)+g(Fπ2,π3)g(Fπ1,π5)]=0. (4.5)

    Taking a frame field over π1 and π5 in Eq (4.5) and using Eqs (2.1) and (2.3), we get

    S(π2,π3)=r4(α13α21)g(π2,π3). (4.6)

    From Eqs (4.6) and (1.4), we get

    r4(α13α21)g(π2,π3)=ug(π2,π3)vη(π2)η(π3)12[g(π2ξ,π3)+g(π2,π3ξ)]. (4.7)

    Taking π2=π3=Ei, multiplying (4.7) by ϵii, and using Eqs (2.5) and (2.6), we get

    4uv=r(α13α21)+4divξ. (4.8)

    Using Eq (2.7) in Eq (4.8), we get

    4uv=[4λK(ψ3p)](α13α21)+4divξ. (4.9)

    Now, putting π2=π3=ξ in (4.7), we have

    uv=r4(α13α21). (4.10)

    Using Eq (2.7) in Eq (4.10), we get

    uv=[λK4(ψ3p)](α13α21). (4.11)

    From Eqs (4.9) and (4.11), we have

    u=[λK4(ψ3p)](α13α21)+43divξandv=43divξ, (4.12)

    if v=0, then we get the Ricci soliton with u=[λK4(ψ3p)](α13α21).

    This will be steady if u=0, therefore, from Eq (4.12), we get p=43λK+ψ3 or (α13α21)=0.

    Shrinking if u<0, therefore, from Eq (4.12), we get p<43λK+ψ3, and (α13α21)>0 or p>43λK+ψ3 or (α13α21)<0.

    Expanding if u>0, therefore, from Eq (4.12), we get p>43λK+ψ3, and (α13α21)>0 or p<43λK+ψ3, and (α13α21)<0.

    Thus, we conclude:

    Theorem 4.1. A Ricci soliton (g,ξ,u) in a pseudo-W8 flat Lorentzian Kähler space-time manifold with cosmological constant is:

    (i) steady: if p=43λK+ψ3 or (α13α21)=0,

    (ii) shrinking: p<43λK+ψ3, and (α13α21)>0 or p>43λK+ψ3, and (α13α21)<0,

    (iii) or expanding: if p>43λK+ψ3, and (α13α21)>0 or p<43λK+ψ3, and (α13α21)<0.

    Using Eqs (2.9) and (4.8), we get

    4uv=K(ψ3p)(α13α21)+4divξ. (4.13)

    Using Eqs (2.9) and (4.10), we get

    uv=K4(ψ3p)(α13α21). (4.14)

    After calculating (4.13) and (4.14), we have

    u=K4(ψ3p)(α13α21)+43divξandv=43divξ, (4.15)

    if v=0, then we get the Ricci soliton with u=K4(ψ3p)(α13α21).

    This will be steady if u=0, therefore, from Eq (4.15), we get p=ψ3 or (α13α21)=0.

    Shrinking if u<0, therefore, from Eq (4.15), we get p<ψ3, and (α13α21)>0 or p>ψ3, and (α13α21)<0.

    Expanding if u>0, therefore, from Eq (4.15), we get p>ψ3, and (α13α21)>0 or p<ψ3, and (α13α21)<0.

    Thus, we conclude:

    Theorem 4.2. A Ricci soliton (g,ξ,u) in a pseudo-W8 flat Lorentzian Kähler space-time manifold with cosmological constant is:

    (i) steady: if p=ψ3 or (α13α21)=0,

    (ii) shrinking: p<ψ3, and (α13α21)>0 or p>ψ3, and (α13α21)<0,

    (iii) or expanding: if p>ψ3, and (α13α21)>0 or p<ψ3, and (α13α21)<0.

    From Eq (1.6) and (4.6), we get

    r4(α13α21)g(π2,π3)=(ur2)g(π2,π3)vη(π2)η(π3)12[g(π2ξ,π3)+g(π2,π3ξ)]. (4.16)

    Taking π2=π3=Ei, multiplying Eq (4.16) by ϵii, and using Eqs (2.5) and (2.6), we get

    4uv=r(3α13α2)+4divξ. (4.17)

    Using Eq (2.7) in Eq (4.17), we have

    4uv=[4λ+K(ψ3p)](3α13α2)+4divξ. (4.18)

    Now, putting π2=π3=ξ in (4.16), we get

    uv=r4(3α13α2). (4.19)

    Using Eq (2.7) in Eq (4.19), we get

    uv=[λ+K4(ψ3p)](3α13α2). (4.20)

    From Eqs (4.18) and (4.20), we have

    u=[λ+K4(ψ3p)](3α13α2)+43divξandv=43divξ, (4.21)

    if v=0, then we get the Einstein soliton with u=[λ+K4(ψ3p)](3α13α2).

    This will be steady if u=0, therefore, from Eq (4.21), we get p=43λK+ψ3 or (3α13α2)=0.

    Shrinking if u<0, therefore, from Eq (4.21), we get p<43λK+ψ3, and (3α13α2)>0 or p>43λK+ψ3, and (3α13α2)<0.

    Expanding if u>0, therefore, from Eq (4.21), we get p>43λK+ψ3, and (3α13α2)>0 or p<43λK+ψ3, and (3α13α2)<0.

    Thus, we conclude:

    Theorem 4.3. An Einstein soliton (g,ξ,u) in a pseudo-W8 flat Lorentzian Kähler space-time manifold with cosmological constant is:

    (i) steady: if p=43λK+ψ3 or (3α13α2)=0,

    (ii) shrinking: if p<43λK+ψ3, and (3α13α2)>0 or p>43λK+ψ3, and (3α13α2)<0,

    (iii) or expanding: if p>43λK+ψ3, and (3α13α2)>0 or p<43λK+ψ3, and (3α13α2)<0.

    Using Eqs (2.9) and (4.17), we get

    4uv=K(ψ3p)(3α13α2)+4divξ. (4.22)

    Using Eqs (2.9) and (4.19), we get

    uv=K(ψ3p)4(3α13α2). (4.23)

    After calculating Eqs (4.22) and (4.23), we get

    u=K(ψ3p)4(3α13α2)+43divξandv=43divξ, (4.24)

    if v=0, then we get the Einstein soliton with u=K(ψ3p)4(3α13α2).

    This will be steady if u=0, therefore, from Eq (4.24), we get p=ψ3 or (3α13α2)=0.

    Shrinking if u<0, therefore, from Eq (4.24), we get p<ψ3, and (3α13α2)>0 or p>ψ3, and (3α13α2)<0.

    Expanding if u>0, therefore, from Eq (4.24), we get p>ψ3, and (3α13α2)>0 or p<ψ3, and (3α13α2)<0.

    Thus, we conclude:

    Theorem 4.4. An Einstein soliton (g,ξ,u) in a pseudo-W8 flat Lorentzian Kähler space-time manifold without cosmological constant is:

    (i) steady: if p=ψ3 or (3α13α2)=0,

    (ii) shrinking: if p<ψ3, and (3α13α2)>0 or p>ψ3, and (3α13α2)<0,

    (iii) or expanding: if p>ψ3, and (3α13α2)>0, and or p<ψ3, and (3α13α2)<0.

    B. B. Chaturvedi, Kunj Bihari Kaushik, Prabhawati Bhagat, Mohammad Nazrul Islam Khan: conceptualization, methodology, investigation, writing-original draft, writing-review and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

    The authors declare no conflicts of interest.



    [1] A. Awane, A. Chkiriba, M. Goze, E. Azizi, M. B. Bah, Vectorial polarized manifolds, Africain Journal of Mathematical Physics, 4 (2007), 33–43.
    [2] M. B. Ayed, K. E. Mehdi, M. O. Ahmedou, F. Pacella, Energy and Morse index of solutions of Yamabe type problems on thin annuli, J. Eur. Math. Soc., 7 (2005), 283–304. https://doi.org/10.4171/JEMS/29 doi: 10.4171/JEMS/29
    [3] A. M. Blaga, On gradient η-Einstein solitons, Kragujev. J. Math., 42 (2018), 229–237.
    [4] A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41
    [5] G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Analysis, 132 (2016), 66–94. https://doi.org/10.1016/j.na.2015.10.021
    [6] M. C. Chaki, S. Ray, Space-times with covariant-constant energy-momentum tensor, Int. J. Theor. Phys., 35 (1996), 1027–1032. https://doi.org/10.1007/BF02302387 doi: 10.1007/BF02302387
    [7] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. https://doi.org/10.5486/PMD.2000.2169 doi: 10.5486/PMD.2000.2169
    [8] B. B. Chaturvedi, P. Bhagat, M. N. I. Khan, Novel theorems for a Bochner flat Lorentzian Kähler space-time manifold with η-Ricci-Yamabe solitons, Chaos Soliton. Fract., 11 (2023), 100097. https://doi.org/10.1016/j.csfx.2023.100097 doi: 10.1016/j.csfx.2023.100097
    [9] H. Chtioui, K. E. Mehdi, N. Gamara, The Webster scalar curvature problem on the three dimensional CR manifolds, B. Sci. Math., 131 (2007), 361–374. https://doi.org/10.1016/j.bulsci.2006.05.003 doi: 10.1016/j.bulsci.2006.05.003
    [10] B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, Rhode Island: AMS and Science Press, 2006.
    [11] J. T. Cho, M. Kimura, Ricci solitons and real hyper surfaces in a complex space form, Tohoku Math. J., 61 (2009), 205–212. https://doi.org/10.2748/tmj/1245849443 doi: 10.2748/tmj/1245849443
    [12] U. C. De, G. C. Ghosh, On weakly Ricci symmetric spacetime manifolds, Radovi Matematicki, 13 (2004), 93–101.
    [13] A. De, C. Özgür, U. C. De, On conformally flat almost pseudo-Ricci symmetric spacetimes, Int. J. Theor. Phys., 51 (2012), 2878–2887. https://doi.org/10.1007/s10773-012-1164-0 doi: 10.1007/s10773-012-1164-0
    [14] U. C. De, Y. J. Suh, S. K. Chaubey, Semi-symmetric curvature properties of Robertson-Walker spacetimes, J. Math. Phys. Anal. Geo., 18 (2022), 368–381. https://doi.org/10.15407/mag18.03.368 doi: 10.15407/mag18.03.368
    [15] P. Debnath, A. Konar, On quasi-Einstein manifolds and quasi-Einstein spacetimes, Differ. Geom. Dyn. Syst., 12 (2010), 73–82.
    [16] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–262.
    [17] A. Haseeb, M. Bilal, S. K. Chaubey, A. A. H. Ahmadini, ξ-Conformally flat LP-kenmotsu manifolds and Ricci-Yamabe solitons, Mathematics, 11 (2022), 212. https://doi.org/10.3390/math11010212 doi: 10.3390/math11010212
    [18] A. Haseeb, S. K. Chaubey, F. Mofarreh, A. A. H. Ahmadini, A solitonic study of riemannian manifolds equipped with a semi-symmetric metric ξ-connection, Axioms, 12 (2023), 809. https://doi.org/10.3390/axioms12090809 doi: 10.3390/axioms12090809
    [19] V. R. Kaigorodov, Structure of space-time curvature, J. Math. Sci., 28 (1985), 256–273. https://doi.org/10.1007/BF02105213 doi: 10.1007/BF02105213
    [20] Venkatesha, H. A. Kumara, Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat., 30 (2019), 725–736. https://doi.org/10.1007/s13370-019-00679-y doi: 10.1007/s13370-019-00679-y
    [21] S. Kundu, On P-Sasakian manifolds, Math. Rep., 15 (2013), 221–232.
    [22] H. Mohajan, Minkowski geometry and space-time manifold in relativity, Journal of Environmental Treatment Techniques, 1 (2013), 101–109.
    [23] B. O'Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983.
    [24] P. Pandey, B. B. Chaturvedi, On a Lorentzian complex space form, Natl. Acad. Sci. Lett., 43 (2020), 351–353. https://doi.org/10.1007/s40009-020-00874-7 doi: 10.1007/s40009-020-00874-7
    [25] G. P. Pokhariyal, Relativistic significance of curvature tensors, International Journal of Mathematics and Mathematical Sciences, 5 (1982), 133–139. https://doi.org/10.1155/S0161171282000131 doi: 10.1155/S0161171282000131
    [26] D. G. Prakasha, S. R. Talawar, K. K. Mitji, On the pseudo-quasi-conformal curvature tensor of P-Sasakian manifolds, Electronic Journal of Mathematical Analysis and Applications, 5 (2017), 147–155.
    [27] B. Prasad, R. P. S. Yadav, S. N. Pandey, Pseudo W8 curvature tensor W˜8 on a Riemannian manifold, Journal of Progressive Science, 9 (2018), 35–43.
    [28] M. M. Praveena, C. S. Bagewadi, On almost pseudo Bochner symmetric generalized complex space forms, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 32 (2016), 149–159.
    [29] M. M. Praveena, C. S. Bagewadi, On almost pseudo symmetric Kähler manifolds, Palestine Journal of Mathematics, 6 (2017), 272–278.
    [30] A. K. Raychaudhuri, B. Sriranjan, A. Banerjee, General relativity, astrophysics, and cosmology, New York: Springer, 1992.
    [31] A. A. Shaikh, S. K. Jana, A pseudo quasi-conformal curvature tensor on a Riemannian manifold, South East Asian J of Mathematics and Mathematical Sciences, 4 (2005), 15–20.
    [32] M. D. Siddiqi, S. A. Siddiqi, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods M., 17 (2020), 2050083. https://doi.org/10.1142/S0219887820500838 doi: 10.1142/S0219887820500838
    [33] Y. J. Suh, V. Chavan, N. A. Pundeer, Pseudo-quasi-conformal curvature tensor and spacetimes of general relativity, Filomat, 35 (2021), 657–666. https://doi.org/10.2298/FIL2102657S doi: 10.2298/FIL2102657S
    [34] Venkatesha, S. Chidananda, η-Ricci soliton and almost η-Ricci soliton on almost coKähler manifolds, Acta Math. Univ. Comenianae, 2 (2021), 217–230.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(776) PDF downloads(25) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog