Research article

Characterization of $ (\alpha, \beta) $ Jordan bi-derivations in prime rings

  • Received: 22 February 2024 Revised: 30 March 2024 Accepted: 09 April 2024 Published: 22 April 2024
  • MSC : 16W25, 16N60

  • Let $ \mathfrak{S} $ be a prime ring with automorphisms $ \alpha, \beta $. A bi-additive map $ \mathfrak{D} $ is called an ($ \alpha, \beta $) Jordan bi-derivation if $ \mathfrak{D}(k^2, s) = \mathfrak{D}(k, s)\alpha(k) + \beta(k) \mathfrak{D}(k, s) $. In this paper, we find conditions under which a symmetric ($ \alpha, \beta $) Jordan bi-derivation becomes a symmetric ($ \alpha, \beta $) bi-derivation. We also characterize the symmetric $ (\alpha, \beta) $ Jordan bi-derivations.

    Citation: Wasim Ahmed, Amal S. Alali, Muzibur Rahman Mozumder. Characterization of $ (\alpha, \beta) $ Jordan bi-derivations in prime rings[J]. AIMS Mathematics, 2024, 9(6): 14549-14557. doi: 10.3934/math.2024707

    Related Papers:

  • Let $ \mathfrak{S} $ be a prime ring with automorphisms $ \alpha, \beta $. A bi-additive map $ \mathfrak{D} $ is called an ($ \alpha, \beta $) Jordan bi-derivation if $ \mathfrak{D}(k^2, s) = \mathfrak{D}(k, s)\alpha(k) + \beta(k) \mathfrak{D}(k, s) $. In this paper, we find conditions under which a symmetric ($ \alpha, \beta $) Jordan bi-derivation becomes a symmetric ($ \alpha, \beta $) bi-derivation. We also characterize the symmetric $ (\alpha, \beta) $ Jordan bi-derivations.



    加载中


    [1] I. N. Herstein, Jordan derivation of prime rings, P. Am. Math. Soc., 8 (1957), 1104–1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2 doi: 10.1090/S0002-9939-1957-0095864-2
    [2] T. K. Lee, Functional identities and Jordan $\sigma$-derivations, Linear Multilinear A., 62 (2016), 221–234. https://doi.org/10.1080/03081087.2015.1032200 doi: 10.1080/03081087.2015.1032200
    [3] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat., 15 (1980), 279–282.
    [4] J. Vukman, Symmetric bi-derivations on prime and semiprime rings, Aequationes Math., 38 (1989), 245–254. https://doi.org/10.1007/BF01840009 doi: 10.1007/BF01840009
    [5] C. Abdioǧlu, T. K. Lee, A basic functional identity with applications to Jordan $\sigma$-biderivations, Commun. Algebra, 45 (2017), 1741–1756. https://doi.org/10.1080/00927872.2016.1222413 doi: 10.1080/00927872.2016.1222413
    [6] M. Ashraf, N. Rehman, S. Ali, On Lie ideals and Jordan generalized derivations of prime rings, Indian J. Pure Ap. Math., 34 (2003), 291–294.
    [7] M. Brešar, Jordan derivations on semiprime rings, P. Am. Math. Soc., 104 (1988), 1003–1006. https://doi.org/10.1090/S0002-9939-1988-0929422-1 doi: 10.1090/S0002-9939-1988-0929422-1
    [8] M. Brešar, J. Vukman, Jordan derivation on prime rings, B. Aust. Math. Soc., 37 (1988), 321–322. https://doi.org/10.1017/S0004972700026927 doi: 10.1017/S0004972700026927
    [9] J. M. Cusack, Jordan derivations on rings, P. Am. Math. Soc., 53 (1975), 321–324. https://doi.org/10.1090/S0002-9939-1975-0399182-5 doi: 10.1090/S0002-9939-1975-0399182-5
    [10] V. D. Filippis, A. Mamouni, L. Oukhtite, Generalized Jordan semiderivations in prime rings, Can. Math. Bull. 58 (2015), 263–270. https://doi.org/10.4153/CMB-2014-066-9 doi: 10.4153/CMB-2014-066-9
    [11] W. Jing, S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, P. Am. Math. Soc., 7 (2003), 605–613. https://doi.org/10.11650/twjm/1500407580 doi: 10.11650/twjm/1500407580
    [12] T. K. Lee, J. H. Lin, Jordan derivations of prime rings with characteristic two, Linear Algebra Appl., 462 (2014), 1–15. https://doi.org/10.1016/j.laa.2014.08.006 doi: 10.1016/j.laa.2014.08.006
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(451) PDF downloads(54) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog