Research article

Characterization of (α,β) Jordan bi-derivations in prime rings

  • Received: 22 February 2024 Revised: 30 March 2024 Accepted: 09 April 2024 Published: 22 April 2024
  • MSC : 16W25, 16N60

  • Let S be a prime ring with automorphisms α,β. A bi-additive map D is called an (α,β) Jordan bi-derivation if D(k2,s)=D(k,s)α(k)+β(k)D(k,s). In this paper, we find conditions under which a symmetric (α,β) Jordan bi-derivation becomes a symmetric (α,β) bi-derivation. We also characterize the symmetric (α,β) Jordan bi-derivations.

    Citation: Wasim Ahmed, Amal S. Alali, Muzibur Rahman Mozumder. Characterization of (α,β) Jordan bi-derivations in prime rings[J]. AIMS Mathematics, 2024, 9(6): 14549-14557. doi: 10.3934/math.2024707

    Related Papers:

    [1] Gurninder S. Sandhu, Deepak Kumar . Correction: A note on derivations and Jordan ideals in prime rings. AIMS Mathematics, 2019, 4(3): 684-685. doi: 10.3934/math.2019.3.684
    [2] Gurninder S. Sandhu, Deepak Kumar . A note on derivations and Jordan ideals of prime rings. AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580
    [3] Abu Zaid Ansari, Faiza Shujat, Ahlam Fallatah . Generalized differential identities on prime rings and algebras. AIMS Mathematics, 2023, 8(10): 22758-22765. doi: 10.3934/math.20231159
    [4] Xiuhai Fei, Zhonghua Wang, Cuixian Lu, Haifang Zhang . Higher Jordan triple derivations on -type trivial extension algebras. AIMS Mathematics, 2024, 9(3): 6933-6950. doi: 10.3934/math.2024338
    [5] Ai-qun Ma, Lin Chen, Zijie Qin . Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras. AIMS Mathematics, 2023, 8(3): 6026-6035. doi: 10.3934/math.2023304
    [6] Shakir Ali, Amal S. Alali, Sharifah K. Said Husain, Vaishali Varshney . Symmetric n-derivations on prime ideals with applications. AIMS Mathematics, 2023, 8(11): 27573-27588. doi: 10.3934/math.20231410
    [7] Fenhong Li, Liang Kong, Chao Li . Non-global nonlinear mixed skew Jordan Lie triple derivations on prime -rings. AIMS Mathematics, 2025, 10(4): 7795-7812. doi: 10.3934/math.2025357
    [8] Mohd Arif Raza, Abdul Nadim Khan, Husain Alhazmi . A characterization of bgeneralized derivations on prime rings with involution. AIMS Mathematics, 2022, 7(2): 2413-2426. doi: 10.3934/math.2022136
    [9] Xinfeng Liang, Lingling Zhao . Bi-Lie n-derivations on triangular rings. AIMS Mathematics, 2023, 8(7): 15411-15426. doi: 10.3934/math.2023787
    [10] Liaqat Ali, Muhammad Aslam, Ghulam Farid, S. Abdel-Khalek . On differential identities of Jordan ideals of semirings. AIMS Mathematics, 2021, 6(7): 6833-6844. doi: 10.3934/math.2021400
  • Let S be a prime ring with automorphisms α,β. A bi-additive map D is called an (α,β) Jordan bi-derivation if D(k2,s)=D(k,s)α(k)+β(k)D(k,s). In this paper, we find conditions under which a symmetric (α,β) Jordan bi-derivation becomes a symmetric (α,β) bi-derivation. We also characterize the symmetric (α,β) Jordan bi-derivations.



    We consider S as an associative ring throughout the paper, and Z(S) its center, unless otherwise mentioned. For all k,lS, if kSl={0}(kSk={0}) implies that k=0 or l=0(k=0), then S is called a prime ring (semiprime ring). For all k,lS, the representations [k,l]=kllk and kl=kl+lk are termed as the commutator (Lie product) and the skew-commutator (Jordan product), respectively. For all aS, S is called an n-torsion free ring if na=0 implies a=0. A map g is called a centralizing (resp. commuting) map on S if [g(k),l]Z(S) (resp. [g(k),l]=0) k,lS. An additive map f:SS satisfying f(kl)=f(k)l+kf(l) (resp. f(k2)=f(k)k+kf(k)) is termed as a derivation (resp. Jordan derivation) k,lS. Clearly we can see that every derivation is a Jordan derivation, however the converse is not true in general. In 1957, Herstein [1, Theorem 4.1] showed that the Jordan derivation d of ring S is a derivation if d satisfies d(klk)=d(k)lk+kd(l)k+kld(k) for all k,lS, where S is a prime ring which is not a commutative integral domain.

    For a prime ring S, an additive map d from S to S is said to be a σ-derivation (resp. Jordan σ-derivation) with associated endomorphism σ if d(kl)=d(k)l+σ(k)d(l) for all k,lS (resp. d(k2)=d(k)k+σ(k)d(k)). In 2015, Lee [2] proved that, for a non-commutative prime ring S, every Jordan σ-derivation is a σ-derivation if it satisfies the condition d(klk)=d(k)lk+σ(k)d(l)k+σ(kl)d(k) for all k,lS.

    If a map d from S×S to S is additive in both arguments, then it is called bi-additive and d is said to be symmetric if d(k,l)=d(l,k). Let d be a symmetric bi-additive map satisfying the condition d(kl,s)=d(k,s)l+kd(l,s) (resp. d(k2,s)=d(k,s)k+kd(k,s)) for all k,l,sS. Then d is said to be a symmetric bi-derivation (resp. symmetric Jordan bi-derivation). In 1980 [3], Maksa was the first to introduce the idea of symmetric bi-derivation, and after that Vukman [4] proved some results related to symmetric bi-derivation using prime and semiprime rings. In 2017, Abdioǧlu and Lee [5] studied a basic functional identity in the presence of bi-additive maps on a non-commutative prime ring S. Precisely, they have proved: "Let S be a non-commutative prime ring and let B:S×SQml(S) be a bi-additive map. Suppose that [B(x,y),[x,y]]=0 for all x,yS. Then there exist λC and a bi-additive map β:S×SC such that B(x,y)=λ[x,y]+β(x,y) for all x,yS". We can also find some related results [2, Theorem 2.1] and their application in order to investigate Jordan σ-derivation.

    Motivated by all these mentioned results, in this paper we defined symmetric (α,β) Jordan bi-derivation in prime rings. It is a map D from S×S to S defined by D(k2,s)=D(k,s)α(k)+β(k)D(k,s) for all k,sS. Any symmetric (α,β) Jordan bi-derivation is symmetric (α,β) bi-derivation, but the converse is not true in general. In this article, we find the answer under which the map symmetric (α,β) Jordan bi-derivation becomes an (α,β) bi-derivation in prime rings S. Also, we characterize the symmetric (α,β) Jordan bi-derivation on any rings S.

    Lemma 2.1. [2,Theorem 2.1] Let S be a non-commutative prime ring and f:S×SQmr(S) be a bi-additive map. If f(k,l)[k,l]=0 for all k,lS, then f=0.

    Theorem 3.1. Let D be a symmetric (α,β) Jordan bi-derivation on a ring S with char(S)2. Consequently, the following claims are true for all k,l,sS.

    (1) D(kl+lk,s)=D(k,s)α(l)+D(l,s)α(k)+β(l)D(k,s)+β(k)D(l,s).

    (2) D(klk,s)=D(k,s)α(l)α(k)+β(k)β(l)D(k,s)+β(k)D(l,s)α(k).

    (3) D(klr+rlk,s)=D(k,s)α(l)α(r)+β(k)D(l,s)α(r)+D(r,s)α(l)α(k)+β(r)D(l,s)α(k)+β(r)β(l)D(k,s)+β(k)β(l)D(r,s).

    (4) D(klr+lrk,s)=D(lr,s)α(k)+D(k,s)α(l)α(r)+β(k)D(lr,s)+β(l)β(r)D(k,s).

    (5) D(l2,s)α(k)+β(k)D(l2,s)=D(l,s)α(l)α(k)+β(k)D(l,s)α(l)+β(l)D(l,s)α(k)+β(k)D(l,s)α(l)+β(k)β(l)D(l,s).

    Proof. (1) In the definition of symmetric (α,β) Jordan bi-derivation, substituting k by k+l, we get

    D((k+l)2,s)=D(k+l,s)α(k+l)+β(k+l)D(k+l,s)=D(k,s)α(k)+D(k,s)α(l)+D(l,s)α(k)+D(l,s)α(l)+β(k)D(k,s)+β(l)D(k,s)+β(k)D(l,s)+β(l)D(l,s). (3.1)

    Also, we have

    D((k+l)2,s)=D(k2+kl+lk+l2,s)=D(k2,s)+D(kl+lk,s)+D(l2,s)=D(k,s)α(k)+β(k)D(k,s)+D(kl+lk,s)+D(l,s)α(l)+β(l)D(l,s). (3.2)

    From (3.1) and (3.2), we conclude that

    D(kl+lk,s)=D(k,s)α(l)+D(l,s)α(k)+β(l)D(k,s)+β(k)D(l,s). (3.3)

    (2) Replacing l by kl+lk in (3.3), we obtain

    D(k(kl+lk)+(kl+lk)k,s)=D(k,s)α(kl+lk)+D(kl+lk,s)α(k)+β(kl+lk)D(k,s)+β(k)D(kl+lk,s). (3.4)

    Using Theorem 3.1 (1) in the right hand side of (3.4), after simplifying we get

    D(k,s)α(k)α(l)+D(k,s)α(l)α(k)+D(k,s)α(l)α(k)+β(k)D(l,s)α(k)+D(l,s)α(k)α(k)+β(l)D(k,s)α(k)+β(k)β(l)D(k,s)+β(l)β(k)D(k,s)+β(k)D(k,s)α(l)+β(k)β(k)D(l,s)+β(k)D(l,s)α(k)+β(k)β(l)D(k,s). (3.5)

    Now, solving the left side of (3.4) and using (3.3), we have

    D(k(kl+lk)+(kl+lk)k,s)=D(k2l+klk+klk+lk2,s)=D(k2l+lk2,s)+2D(klk,s)=D(k2,s)α(l)+β(k2)D(l,s)+D(l,s)α(k2)+β(l)D(k2,s)+2D(klk,s)=D(k,s)α(k)α(l)+β(k)D(k,s)α(l)+β(k)β(k)D(l,s)+D(l,s)α(k)α(k)+β(l)D(k,s)α(k)+β(l)β(k)D(k,s)+2D(klk,s). (3.6)

    From (3.5) and (3.6), we see that

    2D(klk,s)=2D(k,s)α(l)α(k)+2β(k)β(l)D(k,s)+2β(k)D(l,s)α(k). (3.7)

    Since char(S)2, then from the last relation we get the required result:

    D(klk,s)=D(k,s)α(l)α(k)+β(k)β(l)D(k,s)+β(k)D(l,s)α(k).

    (3) Substituting k by k+r in (2) for all rS, we have

    D((k+r)l(k+r),s)=D(k+r,s)α(l)α(k+r)+β(k+r)β(l)D(k+r,s)+β(k+r)D(l,s)α(k+r). (3.8)

    Now, solving the left side of (3.8), we obtain

    D((k+r)l(k+r),s)=D(klk+klr+rlk+rlr,s)=D(klk,s)+D(klr+rlk,s)+D(rlr,s)=D(k,s)α(l)α(k)+β(k)β(l)D(k,s)+β(k)D(l,s)α(k)+D(klr+rlk,s)+D(r,s)α(l)α(r)+β(r)β(l)D(r,s)+β(r)D(l,s)α(r). (3.9)

    Now, solving the right side of (3.8), we obtain

    D(k,s)α(l)α(k)+D(r,s)α(l)α(k)+D(k,s)α(l)α(r)+D(r,s)α(l)α(r)+β(k)β(l)D(k,s)+β(r)β(l)D(k,s)+β(k)β(l)D(r,s)+β(r)β(l)D(r,s)+β(k)D(l,s)α(k)+β(r)D(l,s)α(k)+β(k)D(l,s)α(r)+β(r)D(l,s)α(r). (3.10)

    From (3.9) and (3.10), we find that

    D(klr+rlk,s)=D(r,s)α(l)α(k)+D(k,s)α(l)α(r)+β(r)β(l)D(k,s)+β(k)β(l)D(r,s)+β(r)D(l,s)α(k)+β(k)D(l,s)α(r). (3.11)

    This is the required result.

    (4) Substituting k by k+lr in the definition of (α,β) Jordan bi-derivation, we get

    D((k+lr)2,s)=D(k+lr,s)α(k+lr)+β(k+lr)D(k+lr,s). (3.12)

    Solving the left side of (3.12) and using the definition of (α,β) Jordan bi-derivation, we see that

    D((k+lr)2,s)=D(k2+klr+lrk+(lr)2,s)=D(k2,s)+D(klr+lrk,s)+D((lr)2,s)=D(k,s)α(k)+β(k)D(k,s)+D(klr+lrk,s)+D(lr,s)α(lr)+β(lr)D(lr,s). (3.13)

    Now, solving the right side of (3.12) and using the definition of (α,β) Jordan bi-derivation, we find that

    D(k+lr,s)α(k+lr)+β(k+lr)D(k+lr,s)=D(k,s)α(k)+D(k,s)α(lr)+D(lr,s)α(k)+D(lr,s)α(lr)+β(k)D(k,s)+β(lr)D(k,s)+β(k)D(lr,s)+β(lr)D(lr,s). (3.14)

    Comparing (3.13) and (3.14), we have

    D(klr+lrk,s)=D(k,s)α(lr)+D(lr,s)α(k)+β(lr)D(k,s)+β(k)D(lr,s). (3.15)

    We are done.

    (5) Subtracting (3.15) from (3.11), we get

    D([r,l]k,s)=β(k)D(l,s)α(r)+D(r,s)α(l)α(k)+β(r)D(l,s)α(k)+[β(r),β(l)]D(k,s)+β(k)β(l)D(r,s)D(lr,s)α(k)β(k)D(lr,s). (3.16)

    In particular, for r=l, (3.16) reduces to

    0=β(k)D(l,s)α(l)+D(l,s)α(l)α(k)+β(l)D(l,s)α(k)+β(k)β(l)D(l,s)D(l2,s)α(k)β(k)D(l2,s), (3.17)

    which implies that

    D(l2,s)α(k)+β(k)D(l2,s)=β(k)D(l,s)α(l)+D(l,s)α(l)α(k)+β(l)D(l,s)α(k)+β(k)β(l)D(l,s). (3.18)

    So, the last equality is done. Hence, with this proof our theorem is completed.

    Definition 3.2. Let S be a ring with char(S)2. We define the symbol

    kl=D(l,s)α(k)+β(l)D(k,s)D(kl,s)

    for all k,l,sS.

    Now we present a theorem regarding kl under the action of symmetric (α,β) Jordan bi-derivation.

    Theorem 3.3. Let D be a symmetric (α,β) Jordan bi-derivation on a ring S. Consequently, the following claims are true for all k,ki,l,li,sS, for i{1,2}.

    (1) kl+lk=0.>

    (2) kl1+l2=kl1+kl2.

    (3) (k1+k2)l=kl1+kl2.

    Proof. (1) Let k,l,sS. Then, from Definition 3.2, we have

    kl+lk=D(l,s)α(k)+β(l)D(k,s)D(kl,s)+D(k,s)α(l)+β(k)D(l,s)D(lk,s). (3.19)

    The above relation can be re-written as

    kl+lk=D(l,s)α(k)+β(l)D(k,s)+D(k,s)α(l)+β(k)D(l,s)D(kl+lk,s). (3.20)

    Using (2) of Theorem 3.1 in (3.20), we get

    kl+lk=D(l,s)α(k)+β(l)D(k,s)+D(k,s)α(l)+β(k)D(l,s)D(k,s)α(l)D(l,s)α(k)β(k)D(l,s)β(l)D(k,s). (3.21)

    Solving (3.21), we get

    kl+lk=0.

    (2) Let k,l1,l2,sS. Then, from Definition 3.2, we have

    kl1+l2=D(l1+l2,s)α(k)+β(l1+l2)D(k,s)D(k(l1+l2),s)=D(l1,s)α(k)+D(l2,s)α(k)+β(l1)D(k,s)+β(l2)D(k,s)D(kl1,s)D(kl2,s). (3.22)

    The above relation can be re-written as

    kl1+l2=D(l1,s)α(k)+β(l1)D(k,s)D(kl1,s)+D(l2,s)α(k)+β(l2)D(k,s)D(kl2,s). (3.23)

    Using Definition 3.2 in (3.23), we find that

    kl1+l2=kl1+kl2. (3.24)

    (3) Let k1,k2,l,sS. Then, from the Definition 3.2, we have

    (k1+k2)l=D(l,s)α(k1+k2)+β(l)D(k1+k2,s)D((k1+k2)l,s)=D(l,s)α(l)+D(l,s)α(k2)+β(l)D(k1,s)+β(l)D(k2,s)D(k1l+k2l,s). (3.25)

    The above relation can be re-written as

    (k1+k2)l=D(l,s)α(k1)+β(l)D(k1,s)D(k1l,s)+D(l,s)α(k2)+β(l)D(k2,s)D(k2l,s). (3.26)

    Using Definition 3.2 in (3.26), we see that

    (k1+k2)l=kl1+kl2. (3.27)

    Since we know that every symmetric (α,β) bi-derivation of S is always a symmetric (α,β) Jordan bi-derivation of S, the converse need not be true. So, in our next theorem we will show that a symmetric (α,β) Jordan bi-derivation of S becomes a symmetric (α,β) bi-derivation of S by imposing certain conditions on ring S.

    Theorem 3.4. Let S be a non-commutative prime ring with automorphisms α and β. Any symmetric (α,β) Jordan bi-derivation D of S which satisfies the properties (2) and (3) of Theorem 3.1 (it is trivial if char (S) 2), D is a symmetric (α,β) bi-derivation of S.

    Proof. Substituting r by kl in (3) of Theorem 3.1, we get

    D(klkl+kllk,s)=D(kl,s)α(l)α(k)+D(k,s)α(l)α(kl)+β(kl)β(l)D(k,s)+β(k)β(l)D(kl,s)+β(kl)D(l,s)α(k)+β(k)D(l,s)α(kl). (3.28)

    We solve this equation in two parts. In the first part we solve the right side of (3.28), and in second we solve the left side of (3.28). Solving right side, we get

    D(kl,s)α(l)α(k)+D(k,s)α(l)α(k)α(l)+β(k)β(l)β(l)D(k,s)+β(k)β(l)D(kl,s)+β(k)β(l)D(l,s)α(k)+β(k)D(l,s)α(k)α(l). (3.29)

    Now, solving the left side of (3.28), we find that

    D(klkl+kllk,s)=D((kl)2+kl2k,s)=D((kl)2,s)+D(kl2k,s). (3.30)

    Using the definition of (α,β) Jordan bi-derivation and (2) of Theorem 3.1 in (3.30), we see that

    D(kl,s)α(k)α(l)+β(k)β(l)D(kl,s)+D(k,s)α(l)α(l)α(k)+β(k)β(l)β(l)D(k,s)+β(k)(D(l2,s))α(k). (3.31)

    The above relation can be re-written as

    D(kl,s)α(k)α(l)+β(k)β(l)D(kl,s)+D(k,s)α(l)α(l)α(k)+β(k)β(l)β(l)D(k,s)+β(k)D(l,s)α(l)α(k)+β(k)β(l)D(l,s)α(k). (3.32)

    Comparing (3.29) and (3.32), we find that

    D(k,s)α(l)α(k)α(l)+β(k)D(l,s)α(k)α(l)+D(kl,s)α(l)α(k)=D(kl,s)α(k)α(l)+D(k,s)α(l)α(l)α(k)+β(k)D(l,s)α(l)α(k).

    The above equation can be re-arranged as

    D(k,s)α(l)[α(k),α(l)]+β(k)D(l,s)[α(k),α(l)]D(kl,s)[α(k),α(l)]=0. (3.33)

    This implies that

    (D(k,s)α(l)+β(k)D(l,s)D(kl,s))[α(k),α(l)]=0. (3.34)

    By using Lemma 2.1 in (3.34), we obtain

    (D(k,s)α(l)+β(k)D(l,s)D(kl,s))=0. (3.35)

    That is,

    D(kl,s)=D(k,s)α(l)+β(k)D(l,s). (3.36)

    So, the above equation is a symmetric (α,β) bi-derivation of S, and we are done.

    In this paper, we focused on symmetric (α,β) Jordan biderivation D on a prime ring S, where α and β are automorphisms of S. In Theorem 3.1, we have defined certain properties of (α,β) Jordan biderivation D on a ring S. Finally, we have provided the conditions under which the symmetric (α,β) Jordan biderivation D transforms into a symmetric (α,β) biderivation on a prime ring S.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are thankful to the anonymous referees for their valuable comments and suggestions which have improved the manuscript immensely.

    The second author extend their appreciation to Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Saudi Arabia, for funding this research under the Researchers Supporting Project, No. PNURSP2024R231. Also, third author was very thankful to the DST-SERB (project MATRICS, File No. MTR/2022/000153) for their necessary support and facility.

    The authors have no competing interests to declare that are relevant to the content of this article.



    [1] I. N. Herstein, Jordan derivation of prime rings, P. Am. Math. Soc., 8 (1957), 1104–1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2 doi: 10.1090/S0002-9939-1957-0095864-2
    [2] T. K. Lee, Functional identities and Jordan σ-derivations, Linear Multilinear A., 62 (2016), 221–234. https://doi.org/10.1080/03081087.2015.1032200 doi: 10.1080/03081087.2015.1032200
    [3] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat., 15 (1980), 279–282.
    [4] J. Vukman, Symmetric bi-derivations on prime and semiprime rings, Aequationes Math., 38 (1989), 245–254. https://doi.org/10.1007/BF01840009 doi: 10.1007/BF01840009
    [5] C. Abdioǧlu, T. K. Lee, A basic functional identity with applications to Jordan σ-biderivations, Commun. Algebra, 45 (2017), 1741–1756. https://doi.org/10.1080/00927872.2016.1222413 doi: 10.1080/00927872.2016.1222413
    [6] M. Ashraf, N. Rehman, S. Ali, On Lie ideals and Jordan generalized derivations of prime rings, Indian J. Pure Ap. Math., 34 (2003), 291–294.
    [7] M. Brešar, Jordan derivations on semiprime rings, P. Am. Math. Soc., 104 (1988), 1003–1006. https://doi.org/10.1090/S0002-9939-1988-0929422-1 doi: 10.1090/S0002-9939-1988-0929422-1
    [8] M. Brešar, J. Vukman, Jordan derivation on prime rings, B. Aust. Math. Soc., 37 (1988), 321–322. https://doi.org/10.1017/S0004972700026927 doi: 10.1017/S0004972700026927
    [9] J. M. Cusack, Jordan derivations on rings, P. Am. Math. Soc., 53 (1975), 321–324. https://doi.org/10.1090/S0002-9939-1975-0399182-5 doi: 10.1090/S0002-9939-1975-0399182-5
    [10] V. D. Filippis, A. Mamouni, L. Oukhtite, Generalized Jordan semiderivations in prime rings, Can. Math. Bull. 58 (2015), 263–270. https://doi.org/10.4153/CMB-2014-066-9 doi: 10.4153/CMB-2014-066-9
    [11] W. Jing, S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, P. Am. Math. Soc., 7 (2003), 605–613. https://doi.org/10.11650/twjm/1500407580 doi: 10.11650/twjm/1500407580
    [12] T. K. Lee, J. H. Lin, Jordan derivations of prime rings with characteristic two, Linear Algebra Appl., 462 (2014), 1–15. https://doi.org/10.1016/j.laa.2014.08.006 doi: 10.1016/j.laa.2014.08.006
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(810) PDF downloads(58) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog