In this note, we characterize $ b- $generalized derivations which are strong commutative preserving (SCP) on $ \mathscr{R} $. Moreover, we also discuss and characterize $ b- $generalized derivations involving certain $ \ast- $differential/functional identities on rings possessing involution.
Citation: Mohd Arif Raza, Abdul Nadim Khan, Husain Alhazmi. A characterization of $ b- $generalized derivations on prime rings with involution[J]. AIMS Mathematics, 2022, 7(2): 2413-2426. doi: 10.3934/math.2022136
In this note, we characterize $ b- $generalized derivations which are strong commutative preserving (SCP) on $ \mathscr{R} $. Moreover, we also discuss and characterize $ b- $generalized derivations involving certain $ \ast- $differential/functional identities on rings possessing involution.
[1] | S. Ali, N. A. Dar, On $\ast-$centralizing mappings in rings with involution, Georgian Math. J., 21 (2014), 25–28. doi: 10.1515/gmj-2014-0006. doi: 10.1515/gmj-2014-0006 |
[2] | S. Ali, N. Dar, A. N. Khan, On strong commutativity preserving like maps in rings with involution, Miskolc Math. Notes, 16 (2015), 17–24. doi: 10.18514/MMN.2015.1297. doi: 10.18514/MMN.2015.1297 |
[3] | M. Ashraf, M. A. Raza, S. A. Parry, Commutators having idempotent values with automorphisms in semi-prime rings, Math. Rep., 20 (2018), 51–57. |
[4] | K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, New York: Marcel Dekker, Inc., 1996. |
[5] | H. E. Bell, M. N. Daif, On commutativity and strong commutativity-preserving maps, Can. Math. Bull., 37 (1994), 443–447. doi: 10.4153/CMB-1994-064-x. doi: 10.4153/CMB-1994-064-x |
[6] | H. E. Bell, G. Mason, On derivations in near-rings and rings, Math. J. Okayama Univ., 34 (1992), 135–144. |
[7] | M. Brešar, W. S. Martindale III, C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161 (1993), 342–357. doi: 10.1006/jabr.1993.1223. doi: 10.1006/jabr.1993.1223 |
[8] | N. A. Dar, A. N. Khan, Generalized derivations in rings with involution, Algebra Colloq., 24 (2017), 393–399. doi: 10.1142/S1005386717000244. doi: 10.1142/S1005386717000244 |
[9] | V. De Filippis, Annihilators and power values of generalized skew derivations on Lie ideals, Can. Math. Bull., 59 (2016), 258–270. doi: 10.4153/CMB-2015-077-x. doi: 10.4153/CMB-2015-077-x |
[10] | V. De Filippis, N. Rehman, M. A. Raza, Strong commutativity preserving skew derivations in semiprime rings, Bull. Malays. Math. Sci. Soc., 41 (2018), 1819–1834. doi: 10.1007/s40840-016-0429-9. doi: 10.1007/s40840-016-0429-9 |
[11] | V. De Filippis, F. Wei, $b-$generalized skew derivations on Lie ideals, Mediterr. J. Math., 15 (2018), 65. doi: 10.1007/s00009-018-1103-2. doi: 10.1007/s00009-018-1103-2 |
[12] | Q. Deng, M. Ashraf, On strong commutativity preserving maps, Results Math., 30 (1996), 259–263. |
[13] | B. Dhara, N. Rehman, M. A. Raza, Lie ideals and action of generalized derivations in rings, Miskolc Math. Notes, 16 (2015), 769–779. doi: 10.18514/MMN.2015.1343 |
[14] | I. N. Herstein, Rings with involution, Chicago: The University of Chicago Press, 1976. |
[15] | A. N. Khan, M. A. Raza, H. Alhazmi, Strong commutativity preserving skew derivations on Banach algebras, J. Taibah University Sci., 13 (2019), 478–480. doi: 10.1080/16583655.2019.1596377. doi: 10.1080/16583655.2019.1596377 |
[16] | V. K. Kharchenko, Differential identity of prime rings, Algebra Logic, 17 (1978), 155–168. doi: 10.1007/BF01670115. doi: 10.1007/BF01670115 |
[17] | M. T. Kǫsan, T. K. Lee, $b-$generalized derivations of semiprime rings having nilpotent values, J. Aust. Math. Soc., 96 (2014), 326–337. doi: 10.1017/S1446788713000670. doi: 10.1017/S1446788713000670 |
[18] | P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica, 11 (1983), 75–80. |
[19] | T. K. Lee, Generalized derivations of left faithful rings, Commun. Algebra, 27 (1999), 4057–4073. doi: 10.1080/00927879908826682. doi: 10.1080/00927879908826682 |
[20] | T. K. Lee, T. L. Wong, Nonadditive strong commutativity preserving maps, Commun. Algebra, 40 (2012), 2213–2218. doi: 10.1080/00927872.2011.578287. doi: 10.1080/00927872.2011.578287 |
[21] | P. K. Liau, W. L. Huang, C. K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl., 436 (2012), 3099–3108. doi: 10.1016/j.laa.2011.10.014. doi: 10.1016/j.laa.2011.10.014 |
[22] | P. K. Liau, C. K. Liu, An Engel condition with $b-$generalized derivations for Lie ideals, J. Algebra Appl., 17 (2018), 1850046. doi: 10.1142/S0219498818500469. doi: 10.1142/S0219498818500469 |
[23] | J. S. Lin, C. K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl., 428 (2008), 1601–1609 doi: 10.1016/j.laa.2007.10.006. doi: 10.1016/j.laa.2007.10.006 |
[24] | J. S. Lin, C. K. Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl., 432 (2010), 14–23. doi: 10.1016/j.laa.2009.06.036. doi: 10.1016/j.laa.2009.06.036 |
[25] | C. K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math., 166 (2012), 453–465. doi: 10.1007/s00605-010-0281-1. doi: 10.1007/s00605-010-0281-1 |
[26] | C. K. Liu, An Engel condition with $b-$generalized derivations, Linear Multilinear Algebra, 65 (2017), 300–312. doi: 10.1080/03081087.2016.1183560. doi: 10.1080/03081087.2016.1183560 |
[27] | J. Ma, X. W. Xu, F. W. Niu, Strong commutativity-preserving generalized derivations on semiprime rings, Acta Math. Sin. (Engl. Ser.), 24 (2008), 1835–1842. doi: 10.1007/s10114-008-7445-0. doi: 10.1007/s10114-008-7445-0 |
[28] | W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576–584. doi: 10.1016/0021-8693(69)90029-5. doi: 10.1016/0021-8693(69)90029-5 |
[29] | E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100. doi: 10.1090/S0002-9939-1957-0095863-0. doi: 10.1090/S0002-9939-1957-0095863-0 |
[30] | M. A. Raza, On automorphisms in prime rings with applications, Commun. Korean Math. Soc., 36 (2021), 641–650. doi: 10.4134/CKMS.c200341. doi: 10.4134/CKMS.c200341 |
[31] | N. Rehman, M. A. Raza, On $m$-commuting mappings with skew derivations in prime rings, St. Petersburg Math. J., 27 (2016), 641–650. doi: 10.1090/spmj/1411. doi: 10.1090/spmj/1411 |
[32] | W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl., 14 (1976), 29–35. doi: 10.1016/0024-3795(76)90060-4. doi: 10.1016/0024-3795(76)90060-4 |
[33] | B. Zalar, On centralizers of semiprime rings, Commentat. Math. Univ. Carol., 32 (1991), 609–614. |