Assume that the moment-generating function of the random variable $ Y $ exists in a neighborhood of the origin. The aim of this paper is to investigate the probabilistic type 2 Bernoulli polynomials associated with $ Y $ and the probabilistic type 2 Euler polynomials associated with $ Y $, along with the probabilistic type 2 cosine-Bernoulli polynomials associated with $ Y $, the probabilistic type 2 sine-Bernoulli polynomials associated with $ Y $, the probabilistic type 2 cosine-Euler polynomials associated with $ Y $, and the probabilistic type 2 sine-Euler polynomials associated with $ Y $. We deal with their properties, related identities and explicit expressions.
Citation: Li Chen, Dmitry V. Dolgy, Taekyun Kim, Dae San Kim. Probabilistic type 2 Bernoulli and Euler polynomials[J]. AIMS Mathematics, 2024, 9(6): 14312-14324. doi: 10.3934/math.2024696
Assume that the moment-generating function of the random variable $ Y $ exists in a neighborhood of the origin. The aim of this paper is to investigate the probabilistic type 2 Bernoulli polynomials associated with $ Y $ and the probabilistic type 2 Euler polynomials associated with $ Y $, along with the probabilistic type 2 cosine-Bernoulli polynomials associated with $ Y $, the probabilistic type 2 sine-Bernoulli polynomials associated with $ Y $, the probabilistic type 2 cosine-Euler polynomials associated with $ Y $, and the probabilistic type 2 sine-Euler polynomials associated with $ Y $. We deal with their properties, related identities and explicit expressions.
[1] | M. Abbas, S. Bouroubi, On new identities for Bell's polynomials, Discrete Math., 293 (2005), 5–10. https://doi.org/10.1016/j.disc.2004.08.023 doi: 10.1016/j.disc.2004.08.023 |
[2] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1992. |
[3] | J. A. Adell, Probabilistic Stirling numbers of the second kind and applications, J. Theor. Probab., 35 (2022), 636–652. https://doi.org/10.1007/s10959-020-01050-9 doi: 10.1007/s10959-020-01050-9 |
[4] | A. Z. Broder, The $r$-Stirling numbers, Discrete Math., 49 (1984), 241–259. https://doi.org/10.1016/0012-365X(84)90161-4 doi: 10.1016/0012-365X(84)90161-4 |
[5] | L. Carlitz, Some remarks on the Bell numbers, Fibonacci Quart., 18 (1980), 66–73. |
[6] | L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Berlin: Springer, 1974. |
[7] | R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2 Eds., Massachusetts: Addison Wesley Publishing Company, 1994. |
[8] | G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147–159. |
[9] | T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random variables, Russ. J. Math. Phys., 30 (2023), 528–542. https://doi.org/10.1134/S106192082304009X doi: 10.1134/S106192082304009X |
[10] | T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys., 31 (2024), 94–105. https://doi.org/10.1134/S106192084010072 doi: 10.1134/S106192084010072 |
[11] | T. Kim, D. S. Kim, L. C. Jang, H. Y. Kim, On type 2 degenerate Bernoulli and Euler polynomials of complex variable, Adv. Differ. Equ., 2019 (2019), 490. https://doi.org/10.1186/s13662-019-2419-3 doi: 10.1186/s13662-019-2419-3 |
[12] | T. Kim, D. S. Kim, Some identities on degenerate $r$-Stirling numbers via boson operators, Russ. J. Math. Phys., 29 (2022), 508–517. https://doi.org/10.1134/S1061920822040094 doi: 10.1134/S1061920822040094 |
[13] | T. Kim, D. S. Kim, J. Kwon, Probabilistic degenerate Stirling polynomials of the second kind and their applications, Math. Comput. Model. Dyn. Syst., 30 (2024), 16–30. https://doi.org/10.1080/13873954.2023.2297571 doi: 10.1080/13873954.2023.2297571 |
[14] | T. Kim, L. C. Jang, D. S. Kim, H. Y. Kim, Some identities on type 2 degenerate Bernoulli polynomials of the second kind, Symmetry, 12 (2020), 510. https://doi.org/10.3390/sym12040510 doi: 10.3390/sym12040510 |
[15] | M. Masjed-Jamei, M. R. Beyki, W. Koepf, A new type of Euler polynomials and numbers, Mediterr. J. Math., 15 (2018), 138. https://doi.org/10.1007/s00009-018-1181-1 doi: 10.1007/s00009-018-1181-1 |
[16] | J. Riordan, Combinatorial Identities, New York: John Wiley & Sons, 1968. |
[17] | S. Roman, The Umbral Calculus, New York: Springer, 1984. |
[18] | S. M. Ross, Introduction to Probability Models, 13 Eds., London: Academic Press, 2024. |
[19] | S. Soni, P. Vellaisamy, A. K. Pathak, A probabilistic generalization of the Bell polynomials, J. Anal., 32 (2024), 711–732. https://doi.org/10.1007/s41478-023-00642-y doi: 10.1007/s41478-023-00642-y |
[20] | R. Xu, Y. Ma, T. Kim, D. S. Kim, S. Boulaarasp, Probabilistic central Bell polynomials, preprint paper, 2024. https://doi.org/10.48550/arXiv.2403.00468 |