Research article Special Issues

Probabilistic type 2 Bernoulli and Euler polynomials

  • Received: 05 March 2024 Revised: 26 March 2024 Accepted: 09 April 2024 Published: 19 April 2024
  • MSC : 11B68, 11B73, 11B83

  • Assume that the moment-generating function of the random variable $ Y $ exists in a neighborhood of the origin. The aim of this paper is to investigate the probabilistic type 2 Bernoulli polynomials associated with $ Y $ and the probabilistic type 2 Euler polynomials associated with $ Y $, along with the probabilistic type 2 cosine-Bernoulli polynomials associated with $ Y $, the probabilistic type 2 sine-Bernoulli polynomials associated with $ Y $, the probabilistic type 2 cosine-Euler polynomials associated with $ Y $, and the probabilistic type 2 sine-Euler polynomials associated with $ Y $. We deal with their properties, related identities and explicit expressions.

    Citation: Li Chen, Dmitry V. Dolgy, Taekyun Kim, Dae San Kim. Probabilistic type 2 Bernoulli and Euler polynomials[J]. AIMS Mathematics, 2024, 9(6): 14312-14324. doi: 10.3934/math.2024696

    Related Papers:

  • Assume that the moment-generating function of the random variable $ Y $ exists in a neighborhood of the origin. The aim of this paper is to investigate the probabilistic type 2 Bernoulli polynomials associated with $ Y $ and the probabilistic type 2 Euler polynomials associated with $ Y $, along with the probabilistic type 2 cosine-Bernoulli polynomials associated with $ Y $, the probabilistic type 2 sine-Bernoulli polynomials associated with $ Y $, the probabilistic type 2 cosine-Euler polynomials associated with $ Y $, and the probabilistic type 2 sine-Euler polynomials associated with $ Y $. We deal with their properties, related identities and explicit expressions.



    加载中


    [1] M. Abbas, S. Bouroubi, On new identities for Bell's polynomials, Discrete Math., 293 (2005), 5–10. https://doi.org/10.1016/j.disc.2004.08.023 doi: 10.1016/j.disc.2004.08.023
    [2] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1992.
    [3] J. A. Adell, Probabilistic Stirling numbers of the second kind and applications, J. Theor. Probab., 35 (2022), 636–652. https://doi.org/10.1007/s10959-020-01050-9 doi: 10.1007/s10959-020-01050-9
    [4] A. Z. Broder, The $r$-Stirling numbers, Discrete Math., 49 (1984), 241–259. https://doi.org/10.1016/0012-365X(84)90161-4 doi: 10.1016/0012-365X(84)90161-4
    [5] L. Carlitz, Some remarks on the Bell numbers, Fibonacci Quart., 18 (1980), 66–73.
    [6] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Berlin: Springer, 1974.
    [7] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2 Eds., Massachusetts: Addison Wesley Publishing Company, 1994.
    [8] G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147–159.
    [9] T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random variables, Russ. J. Math. Phys., 30 (2023), 528–542. https://doi.org/10.1134/S106192082304009X doi: 10.1134/S106192082304009X
    [10] T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys., 31 (2024), 94–105. https://doi.org/10.1134/S106192084010072 doi: 10.1134/S106192084010072
    [11] T. Kim, D. S. Kim, L. C. Jang, H. Y. Kim, On type 2 degenerate Bernoulli and Euler polynomials of complex variable, Adv. Differ. Equ., 2019 (2019), 490. https://doi.org/10.1186/s13662-019-2419-3 doi: 10.1186/s13662-019-2419-3
    [12] T. Kim, D. S. Kim, Some identities on degenerate $r$-Stirling numbers via boson operators, Russ. J. Math. Phys., 29 (2022), 508–517. https://doi.org/10.1134/S1061920822040094 doi: 10.1134/S1061920822040094
    [13] T. Kim, D. S. Kim, J. Kwon, Probabilistic degenerate Stirling polynomials of the second kind and their applications, Math. Comput. Model. Dyn. Syst., 30 (2024), 16–30. https://doi.org/10.1080/13873954.2023.2297571 doi: 10.1080/13873954.2023.2297571
    [14] T. Kim, L. C. Jang, D. S. Kim, H. Y. Kim, Some identities on type 2 degenerate Bernoulli polynomials of the second kind, Symmetry, 12 (2020), 510. https://doi.org/10.3390/sym12040510 doi: 10.3390/sym12040510
    [15] M. Masjed-Jamei, M. R. Beyki, W. Koepf, A new type of Euler polynomials and numbers, Mediterr. J. Math., 15 (2018), 138. https://doi.org/10.1007/s00009-018-1181-1 doi: 10.1007/s00009-018-1181-1
    [16] J. Riordan, Combinatorial Identities, New York: John Wiley & Sons, 1968.
    [17] S. Roman, The Umbral Calculus, New York: Springer, 1984.
    [18] S. M. Ross, Introduction to Probability Models, 13 Eds., London: Academic Press, 2024.
    [19] S. Soni, P. Vellaisamy, A. K. Pathak, A probabilistic generalization of the Bell polynomials, J. Anal., 32 (2024), 711–732. https://doi.org/10.1007/s41478-023-00642-y doi: 10.1007/s41478-023-00642-y
    [20] R. Xu, Y. Ma, T. Kim, D. S. Kim, S. Boulaarasp, Probabilistic central Bell polynomials, preprint paper, 2024. https://doi.org/10.48550/arXiv.2403.00468
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(703) PDF downloads(76) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog