In this paper, we proposed a higher-order uniform accuracy scheme for nonlinear $ \psi $-Volterra integral equations in two dimension with weakly singular kernel by using the modified block-by-block method. First, we constructed a high order uniform accuracy scheme method in this paper by dividing the entire domain into some small sub-domains and approximating the integration function with biquadratic interpolation in each sub-domain. Second, we rigorously proved that the convergence order of the higher order uniform accuracy scheme was $ O(h_{s}^{3+\sigma_{1} }+h_{t}^{3+\sigma_{2} }) $ with $ 0 < \sigma_{1}, \sigma_{2} < 1 $ by using the discrete Gronwall inequality. Finally, two numerical examples were used to illustrate experimental results with different values of $ \psi $ to support the theoretical results.
Citation: Ziqiang Wang, Jiaojiao Ma, Junying Cao. A higher-order uniform accuracy scheme for nonlinear $ \psi $-Volterra integral equations in two dimension with weakly singular kernel[J]. AIMS Mathematics, 2024, 9(6): 14325-14357. doi: 10.3934/math.2024697
In this paper, we proposed a higher-order uniform accuracy scheme for nonlinear $ \psi $-Volterra integral equations in two dimension with weakly singular kernel by using the modified block-by-block method. First, we constructed a high order uniform accuracy scheme method in this paper by dividing the entire domain into some small sub-domains and approximating the integration function with biquadratic interpolation in each sub-domain. Second, we rigorously proved that the convergence order of the higher order uniform accuracy scheme was $ O(h_{s}^{3+\sigma_{1} }+h_{t}^{3+\sigma_{2} }) $ with $ 0 < \sigma_{1}, \sigma_{2} < 1 $ by using the discrete Gronwall inequality. Finally, two numerical examples were used to illustrate experimental results with different values of $ \psi $ to support the theoretical results.
[1] | A. Abdi, J. P. Berrut, H. Podhaisky, The barycentric rational predictor-corrector schemes for Volterra integral equations, J. Comput. Appl. Math., 440 (2024), 115611. https://doi.org/10.1016/j.cam.2023.115611 doi: 10.1016/j.cam.2023.115611 |
[2] | L. B. Zhao, C. M, Huang, The generalized quadrature method for a class of highly oscillatory Volterra integral equations, Numer. Algorithms, 92 (2023), 1503–1516. https://doi.org/10.1007/s11075-022-01350-7 doi: 10.1007/s11075-022-01350-7 |
[3] | H. T. Cai, Oscillation-preserving Legendre-Galerkin methods for second kind integral equations with highly oscillatory kernels, Numer. Algorithms, 90 (2022), 1091–1115. https://doi.org/10.1007/s11075-021-01223-5 doi: 10.1007/s11075-021-01223-5 |
[4] | Y. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations, J. Appl. Math. Comput., 60 (2019), 201–222. https://doi.org/10.1007/s12190-018-1209-5 doi: 10.1007/s12190-018-1209-5 |
[5] | M. Ghiat, B. Tair, H. Ghuebbai, S. Kamouche, Block-by-block method for solving non-linear Volterra integral equation of the first kind, Comput. Appl. Math., 42 (2023), 67. https://doi.org/10.1007/s40314-023-02212-1 doi: 10.1007/s40314-023-02212-1 |
[6] | S. Nemati, P. M. Lima, Y. Ordokhani, Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials, J. Comput. Appl. Math., 242 (2013), 53–69. https://doi.org/10.1016/j.cam.2012.10.021 doi: 10.1016/j.cam.2012.10.021 |
[7] | I. Zamanpour, R. Ezzati, Operational matrix method for solving fractional weakly singular 2D partial Volterra integral equations, J. Comput. Appl. Math., 419 (2023), 114704. https://doi.org/10.1016/j.cam.2022.114704 doi: 10.1016/j.cam.2022.114704 |
[8] | F. Mirzaee, Z. Rafei, The block by block method for the numerical solution of the nonlinear two-dimensional Volterra integral equations, J. King Saud Univ. Sci., 23 (2011), 191–195. https://doi.org/10.1016/j.jksus.2010.07.008 doi: 10.1016/j.jksus.2010.07.008 |
[9] | H. Laib, A. Boulmerka, A. Bellour, F. Birem, Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method, J. Comput. Appl. Math., 417 (2023), 114537. https://doi.org/10.1016/j.cam.2022.114537 doi: 10.1016/j.cam.2022.114537 |
[10] | W. S. Zheng, Y. P. Chen, A spectral collocation method for a nonlinear multidimensional Volterra integral equation, Numer. Meth. Part. D. E., 39 (2023), 1767–1777. https://doi.org/10.1002/num.22953 doi: 10.1002/num.22953 |
[11] | H. Dehestani, Y. Ordokhani, An efficient approach based on Legendre-Gauss-Lobatto quadrature and discrete shifted Hahn polynomials for solving CaputoCFabrizio fractional Volterra partial integro-differential equations, J. Comput. Appl. Math., 403 (2022), 113851. https://doi.org/10.1016/j.cam.2021.113851 doi: 10.1016/j.cam.2021.113851 |
[12] | Z. W. Wang, X. Y. Hu, B. Hu, A collocation method based on roots of Chebyshev polynomial for solving Volterra integral equations of the second kind, Appl. Math. Lett., 146 (2023), 108804. https://doi.org/10.1016/j.aml.2023.108804 doi: 10.1016/j.aml.2023.108804 |
[13] | Y. X. Wei, Y. P. Chen, A Jacobi spectral method for solving multidimensional linear Volterra integral equation of the second kind, J. Sci. Comput., 79 (2019), 1801–1813. https://doi.org/10.1007/s10915-019-00912-7 doi: 10.1007/s10915-019-00912-7 |
[14] | Z. Q. Wang, K. H. Shi, X. Y. Ye, J. Y. Cao, Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations, AIMS Math., 8 (2023), 29759–29796. https://doi.org/10.3934/math.20231523 doi: 10.3934/math.20231523 |
[15] | H. Laib, A. Boulmerka, A. Bellour, F. Birem, Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method, J. Comput. Appl. Math., 417 (2023), 114537. https://doi.org/10.1016/j.cam.2022.114537 doi: 10.1016/j.cam.2022.114537 |
[16] | M. Heydari, M. Razzaghi, A new wavelet method for fractional integro-differential equations with $\psi$-Caputo fractional derivative, Math. Comput. Simulat., 217 (2024), 97–108. https://doi.org/10.1016/j.matcom.2023.10.023 doi: 10.1016/j.matcom.2023.10.023 |
[17] | J. Li, L. Ma, A unified Maxwell model with time-varying viscosity via $\psi$-Caputo fractional derivative coined, Chaos, Soliton. Fract., 177 (2023), 114230. https://doi.org/10.1016/j.chaos.2023.114230 doi: 10.1016/j.chaos.2023.114230 |
[18] | M. Zaitri, H. Zitane, D. Torres, Pharmacokinetic/Pharmacodynamic anesthesia model incorporating $\psi$-Caputo fractional derivatives, Comput. Biol. Med., 167 (2023), 107679. https://doi.org/10.1016/j.compbiomed.2023.107679 doi: 10.1016/j.compbiomed.2023.107679 |
[19] | A. Jajarmi, D. Baleanu, S. Sajjadi, J. Nieto, Analysis and some applications of a regularized $\psi$-Hilfer fractional derivative, J. Comput. Appl. Math., 415 (2022), 114476. https://doi.org/10.1016/j.cam.2022.114476 doi: 10.1016/j.cam.2022.114476 |
[20] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 305–311. https://doi.org/10.1016/j.cnsns.2019.05.003 doi: 10.1016/j.cnsns.2019.05.003 |
[21] | K. Udhayakumar, R. Rakkiyappan, X. Li, J. Cao, Mutiple $\psi$-type stability of fractional-order quaternion-valued neural networks, Appl. Math. Comput., 401 (2021), 126092. https://doi.org/10.1016/j.amc.2021.126092 doi: 10.1016/j.amc.2021.126092 |
[22] | D. Li, Y. Li, F. Chen, X. Feng, Instantaneous and non-instantaneous impulsive boundary value problem involving the generalized $\psi$-caputo fractional derivative, Fractal Fract., l7 (2023), 206. https://doi.org/10.3390/fractalfract7030206 doi: 10.3390/fractalfract7030206 |
[23] | R. Almeida, A. Malinowska, T. Odzijewicz, On systems of fractional differential equations with the $\psi$-Caputo derivative and their applications, Math. Meth. Appl. Sci., 44 (2021), 8026–8041. https://doi.org/10.1002/mma.5678 doi: 10.1002/mma.5678 |
[24] | A. Sabir, M. ur Rehman, A numerical method based on quadrature rules for $\psi$-fractional differential equations, J. Comput. Appl. Math., 419 (2023), 114684. https://doi.org/10.1016/j.cam.2022.114684 doi: 10.1016/j.cam.2022.114684 |
[25] | M. Zhang, X. Yang, Y. Cao, Numerical analysis of block-by-block method for a class of fractional relaxation-oscillation equations, Appl. Numer. Math., 176 (2022), 38–55. https://doi.org/10.1016/j.apnum.2022.02.008 doi: 10.1016/j.apnum.2022.02.008 |
[26] | Z. Q. Wang, Q. Liu, J. Y. Cao, A higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy, Fractal Fract., 6 (2022), 314. https://doi.org/10.3390/fractalfract6090475 doi: 10.3390/fractalfract6090475 |
[27] | J. Y. Cao, Z. N. Cai, Numerical analysis of a high-order scheme for nonlinear fractional differential equations with uniform accuracy, Numer. Math. Theory Meth. Appl., 14 (2021), 71–112. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829 |
[28] | J. Dixon, S. McKee, Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech., 66 (1986), 535–544. https://doi.org/10.1002/zamm.19860661107 doi: 10.1002/zamm.19860661107 |
[29] | H. Y. Zhu, C. J. Xu, A fast high order method for the time-fractional diffusion equation, SIAM J. Numer. Anal., 57 (2019), 2829–2849. https://doi.org/10.1137/18M1231225 doi: 10.1137/18M1231225 |