Processing math: 68%
Research article Special Issues

Composite trapezoidal quadrature for computing hypersingular integrals on interval

  • In this paper, composite trapezoidal quadrature for numerical evaluation of hypersingular integrals was first introduced. By Taylor expansion at the singular point y, error functional was obtained. We know that the divergence rate of O(hp),p=1,2, and there were no roots of the special function for the first part in the error functional. Meanwhile, for the second part of the error functional, the divergence rate was O(hp+1),p=1,2, but there were roots of the special function. We proved that the convergence rate could reach O(h2) at superconvergence points far from the end of the interval. Two modified trapezoidal quadratures are presented and their convergence rate can reach O(h2) at certain superconvergence points or any local coordinate point. At last, several examples were presented to test our theorem.

    Citation: Xiaoping Zhang, Jin Li. Composite trapezoidal quadrature for computing hypersingular integrals on interval[J]. AIMS Mathematics, 2024, 9(12): 34537-34566. doi: 10.3934/math.20241645

    Related Papers:

    [1] Qian Ge, Jin Li . Extrapolation methods for solving the hypersingular integral equation of the first kind. AIMS Mathematics, 2025, 10(2): 2829-2853. doi: 10.3934/math.2025132
    [2] Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized $ \kappa $–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177
    [3] Sevda Sezer, Zeynep Eken . The Hermite-Hadamard type inequalities for quasi $ p $-convex functions. AIMS Mathematics, 2023, 8(5): 10435-10452. doi: 10.3934/math.2023529
    [4] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [5] Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
    [6] Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364
    [7] Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in $ \mathfrak{h} $-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393
    [8] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [9] Sabila Ali, Rana Safdar Ali, Miguel Vivas-Cortez, Shahid Mubeen, Gauhar Rahman, Kottakkaran Sooppy Nisar . Some fractional integral inequalities via $ h $-Godunova-Levin preinvex function. AIMS Mathematics, 2022, 7(8): 13832-13844. doi: 10.3934/math.2022763
    [10] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
  • In this paper, composite trapezoidal quadrature for numerical evaluation of hypersingular integrals was first introduced. By Taylor expansion at the singular point y, error functional was obtained. We know that the divergence rate of O(hp),p=1,2, and there were no roots of the special function for the first part in the error functional. Meanwhile, for the second part of the error functional, the divergence rate was O(hp+1),p=1,2, but there were roots of the special function. We proved that the convergence rate could reach O(h2) at superconvergence points far from the end of the interval. Two modified trapezoidal quadratures are presented and their convergence rate can reach O(h2) at certain superconvergence points or any local coordinate point. At last, several examples were presented to test our theorem.



    Consider the hypersingular integrals

    Ip(u,y)=ba=u(x)(xy)p+1dx=g(y),y(a,b),pN, (1.1)

    where N=1,2,, ba= denotes a hypersingular integrals with p+1 is singular order and y is the singular point.

    Hypersingular integrals (1.1) originated in the 1970s and 1980s, and have gradually gained attention as the boundary element method (BEM) developed. In the boundary element method, hypersingular integrals often appear when dealing with problems in elasticity, fracture mechanics, fluid mechanics, electromagnetic fields, heat conduction, and computational biology.

    The definition of hypersingular integral can be found by the derivative of the Cauchy principal integral,

    ba=u(x)(xy)p+1dx=1pddyba=u(x)(xy)pdx==1p!dpdypba  u(x)xydx, (1.2)

    subtraction of the singularity

    ba=u(x)(xy)p+1dx=ba=1(xy)p+1[u(x)rj=0u(j)(y)(xy)jj!]dx++rj=0u(j)(y)j!ba=dx(xy)pj+1, (1.3)

    where r>p and Hadamard finite-part integrals

    ba=u(x)(xy)p+1dx=limε0{(yεa+by+ε)u(x)(xy)p+1dx+1p!dpdyp(2u(y)ε)}+p1k=2(Πpk1j=01pj)dpkSkdxpk+Sp, (1.4)

    where

    Sl={2l1k=1,3,,εkllu(k)(y)k!,leven,2l1k=0,2,,εkllu(k)(y)k!,lold, (1.5)

    and so on. These definitions can be proved mathematically equal under certain conditions. For the case p=1,2, the Hadamard finite-part integrals definition is expressed as:

    ba=u(x)dx(xy)p+1=limε0{(yεa+by+ε)u(x)dx(xy)p+12u(p1)(y)ε}. (1.6)

    Because of the hypersingular kernel, classical numerical methods cannot be used directly to compute the hypersingular integral. Different numerical methods can be obtained by different definitions. In 1975, original work of Kutt [22] stressed Gaussian quadrature, then more papers [2,3,7,8,9] on the numerical computation hypersingular based on the definition of the derivative of Cauchy principal integral and subtraction of the singularity. The Newton-Cote methods were presented by Linz [19], while the density function was approximated by the trapezoidal quadrature and Simpson quadrature, and the hypersingular kernel is calculated analysis. Then, the superconvergence phenomenon [14,15,16] of hypersingular integrals [23,24,28] are investigated based on the definition of Hadamard finite-part integrals [4,11,12,13,27]. There are also the extrapolation methods [6,10,17,20] and some other methods [21] to numerical evaluation hypersingular integrals, which are also based on the Hadamard finite-part integral definition. The Gaussian integral formula can attain complete accuracy for low-order polynomials. For the integration of nonstandard intervals or nonstandard weight functions, it is requisite to recalculate the nodes and weights, which might be more complex. The accuracy of extrapolation algorithms hinges on the regularity of the function and the design of the algorithm. If the regularity of the function is not high, the extrapolation results might be unreliable. During multiple extrapolation processes, errors may accumulate, resulting in inaccurate final results.

    Now, we recall the Newton-Cote rule first. Let a=x0<x1<<xn1<xn=b be a uniform partition of [a,b] with h=(ba)/n. We also define the piecewise Lagrangian polynomial interpolation of degree k by

    ukn(x)=kj=0u(xij)ki(x)(xxij)ki(xij),  x[xi,xi+1], (1.7)

    where

    ki(x)=kj=0(xxij), (1.8)

    and a linear transformation

    x=ˆxi(ξ):=(ξ+1)h2+xi,ξ[1,1] (1.9)

    changes the subinterval [xi,xi+1] into [1,1].

    Replacing u(x) in (1.1) by ukn(x) gives the composite Newton-Cotes quadrature

    Qpkn(u;y):=ba=ukn(x)(xy)p+1dx=n1i=0kj=0ω(k)ij(y)u(xij)=Ip(u;y)Epkn(u;y), (1.10)

    where Qpkn(u;y) denotes quadrature rule for p+1 singular order and Epkn(u;y) denotes error estimate, and

    ω(k)ij(y)=1ki(xij)xi+1xi=  ki(x)(xxij)(xy)p+1dx (1.11)

    is the Cotes coefficient. Different from the Cotes coefficient of the Riemann integral, for k2 it is not easy to get the Cotes coefficient for hypersingular integral as we have to compute equation (1.11). There are lots of works that investigate the hypersingular integral with p=1. The error estimate is obtained by Linz [19]

    |E1kn(u;y)|γ2(ξ)hk,k=1,2, (1.12)

    and

    γ(ξ)=min0in|sxi|h=1|ξ|2 (1.13)

    is the distance of singular point to the mesh point.

    A more precise estimate was given in [25], where

    |E1kn(u;y)||lnγ(ξ)|hk+α1 (1.14)

    with u(x)Ck+α[a,b],α[0,1). For the case y=xi,i=0,1,,n, Yu[27] has presented the error estimate with

    |E1kn(u,xi)||lnh|hk,k=1,2, (1.15)

    while in the recent paper, Wu[23] has given the modify rule and the O(hk),k=1,2 convergence rate is obtained. Superconvergence phenomenon of (1.1) has been investigated by [24,25] and the error estimations are presented as

    |E1kn(u;y)|{C[1+η(y)h1α]hk+α,0<α<1,C[η(y)+|lnh|]hk+1,α=1 (1.16)

    for odd k, and

    |E1kn(u;y)|C[1+η(y)h1α]hk+α,0<α1 (1.17)

    for even k, and

    η(y)=max{1ya,1by} (1.18)

    is the distance of singular point s to the boundary of a and b.

    In the following, let y=xm+1+(ξ+1)h2. We present the error expansion of the second order finite-part integral as below:

    ba=  x(xy)2dxn1i=0(hxi2(xiy)2+hxi+12(xi+1y)2)=xm+1xm=      [x(xy)2xi2(xiy)2xi+12(xi+1y)2]dx+n1i=0,imxi+1xi[x(xy)2xi2(xiy)2xi+12(xi+1y)2]dx=xm+1xm=     x(xy)2dx+n1i=0,imxi+1xix(xy)2dxn1i=0(hxi2(xiy)2+hxi+12(xi+1y)2)=limε0{yεxmx(xy)2dx+xm+1y+εx(xy)2dx2yε}+n1i=0,imxi+1xix(xy)2dxn1i=0(hxi2(xiy)2+hxi+12(xi+1y)2)=n1i=0ln|xi+1yyxi|+n1i=0h(xi+xi+1)2(xiy)(xi+1y)+hy2n1i=0(1(xiy)2+1(xi+1y)2)=lnnmξ+12mξ+12+n1i=02i+12(miξ+12)(miξ+12)+12hn1i=0(m+ξ+12(imξ+12)2+m+ξ+12(imξ12)2)=2n1i=0Q1(2(mi)+τ)+1hn1i=0Q1(2(mi)+τ)=1hπ2sin2(π(ξ+1)2)πcotξπ2+1hi=mQ1(2(mi)+τ)+1hi=nm+1Q1(2(mi)+τ)+2i=mQ1(2(mi)+τ)+2i=nm+1Q1(2(mi)+τ), (1.19)

    then we get

    ba=x(xy)2dxn1i=0(hxi2(xiy)2+hxi+12(xi+1y)2)=O(h1), (1.20)

    where Q1(τ)=1+τ2log|1+τ1τ| is the Legendre function of second kind and Q1(τ),Q1(τ) are the first and second derivatives of Q1(τ), then we have

    limn[i=mQ1(2(mi)+τ)+i=nm+1Q1(2(mi)+τ)]=0, (1.21)

    and

    limn[i=mQ1(2(mi)+τ)+i=nm+1Q1(2(mi)+τ)]=0. (1.22)

    By similar calculation, we also have

    ba=  x(xy)3dxn1i=0(hxi2(xiy)3+hxi+12(xi+1y)3)=xm+1xm=      [x(xy)3xi2(xiy)3xi+12(xi+1y)3]dx+n1i=0,imxi+1xi[x(xy)3xi2(xiy)3xi+12(xi+1y)3]dx=(xm+1xm=     +n1i=0,imxi+1xi)x(xy)3dxn1i=0(hxi2(xiy)3+hxi+12(xi+1y)3)=xm+1xm=     x(xy)3dx+n1i=0,imxi+1xix(xy)3dxn1i=0(hxi2(xiy)3+hxi+12(xi+1y)3)=n1i=0h(xiy)(xi+1y)y2n1i=0(1(xi+1y)31(xiy)3)+h2n1i=0(1(xiy)2+1(xi+1y)2)+hy2n1i=0(1(xiy)3+1(xi+1y)3)=2n1i=0Q1(2(mi)+τ)+12hn1i=0Q1(2(mi)+τ)12h2n1i=0Q1(2(mi)+τ)=12h2π3cos(π(ξ+1)2)sin3(π(ξ+1)2)+12h2[i=mQ1(2(mi)+τ)+i=nm+1Q1(2(mi)+τ)]+12hπ2sin2(π(ξ+1)2)+12h[i=mQ1(2(mi)+τ)+i=nm+1Q1(2(mi)+τ)]πcotξπ2+2i=m[Q1(2(mi)+τ)+i=nm+1Q1(2(mi)+τ)]=O(h2). (1.23)

    Because of singularity of hypersingular integral, trapezoidal quadrature has not been used to compute (1.1). From the error expansion above, we know that the trapezoidal quadrature is divergence O(hp),p=1,2 in general, which is the reason that the trapezoidal rule cannot be used to compute the singular or hypersingular integral. In order to get the simple calculation scheme, trapezoidal quadrature for numerical evaluation of the hypersingular integral is presented. Compared with the numerical scheme just compute the density function presented by Linz, (see Eq (1.10)) and we compute the density function and singular kernel at the same time.

    In this paper, we pay our attentions to trapezoidal quadrature for the numerical evaluation hypersingular integral. Furthermore, the relationship of hypersingular integral, supersingular integral, Cauchy principal value integrals, and Riemann integral is also illustrated. In the following, the error functional of trapezoidal quadrature is presented with the first part h1u(y) which is divergence; see Eq (1.19). From the error expansion, the special function is studied which is related with the function 1sin2x and cotx. Then, we prove that the convergence rate can reach O(h2) when singular point s is located at the center of interval. Trapezoidal quadrature is presented to approximate the hypersingular integral and the modified trapezoidal quadrature are also given to illustrate the asymptotic expansion which can be used to compute the hypersingular integral. With the help of the modified trapezoidal quadrature, we can compute the hypersingular integral more easy and this rule can be used to solve the hypersingular integral equation. At last, numerical results show the relationship between the Riemann integral and the hypersingular integral.

    In this part, we present our quadrature, different from u1n(x) in the (1.7) substituted density function u(x), then we have

    u1n(x)=u(xi)2(xiy)p+1+u(xi+1)2(xiy)p+1, (2.1)

    when x(xi,xi+1). Replacing u(x) in (1.1) with u1n(x) gives

    Qp1n(u;y):=n1i=0ωpi(y)u(xi)=ba=u(x)(xy)p+1dxEp1n(u;y), (2.2)

    where Ep1n(u;y) is the error functional for k=1 as the trapezoidal rule, and

    ω1i(y)=h2(xiy)2+h2(xi+1y)2, (2.3)
    ω2i(y)=h2(xiy)3+h2(xi+1y)3 (2.4)

    is the Cote coefficients.

    Before, we present the error functional of trapezoidal quadrature for hypersingular integrals. We define the special function

    ϕ1(x)={11  [1ξx12(x1)12(x+1)]dξ,|x|<1,11[1ξx12(x1)12(x+1)]dξ,|x|>1, (2.5)

    which comes from the error functional by linear transformation, and we also define

    ϕ1(x)=ddx(ϕ1(x)), (2.6)
    ϕ1(x)=ddx(ϕ1(x))=d2dx2(ϕ1(x)), (2.7)

    and

    S1(ξ):=ϕ1(ξ)+i=1[ϕ1(2i+ξ)+ϕ1(2i+ξ)],ξ(1,1), (2.8)
    S1(ξ)=ddξ(S1(ξ)), (2.9)
    S1(ξ)=ddξ(S1(ξ))=d2dξ2(S1(ξ)). (2.10)

    Theorem 2.1. Assume u(x)Cp+2[a,b],p=1,2. Let Qp1n(u;y) be computed by (2.2). Assume that y=xm+(1+ξ)h/2,sxm, and S1(ξ),S1(ξ),S1(ξ) are defined as (2.10), (2.9), and (2.8), and there hold that

    Ep1n(u;y)={u(y)2hS1(ξ)+u(y)2S1(ξ)+R1n(u;y),p=1,u(y)2h2S1(ξ)+u(y)2hS1(ξ)+u(y)4S1(ξ)+R2n(u;y),p=2, (2.11)

    where

    |Rpn(y)|{C[γ2(ξ)+η3(y)]h2,p=1,C[γ3(ξ)+η4(y)]h2,p=2, (2.12)

    γ(ξ) is defined as (1.13) and η(y) is defined as (1.18).

    The asymptotic expansion of the composite trapezoidal quadrature to compute hypersingular integrals is presented.

    In order to prove Theorem 2.1, we give the lemmas as below.

    Lemma 3.1. With the same condition of Theorem 2.1 as p=1, it holds that

    2(xi+1y)2(xiy)2u(x)(xiy)2(xy)2u(xi+1)(xi+1y)2(xy)2u(xi)=[(xi+1y)2(xix)(xi+x2y)+(xiy)2(xi+1x)(xi+1+x2y)]u(y)+(xy)2[(xi+1x)(xiy)+(xix)(xi+1y)]u(y)+R1u(x)+R2u(x)+R3u(x)+R4u(x)+R5u(x), (3.1)

    where

    R1u(x)=16u(3)(α1i)(xy)2(xi+1y)2(xix)3, (3.2)
    R2u(x)=16u(3)(α2i)(xy)2(xiy)2(xi+1x)3, (3.3)
    R3u(x)=16u(3)(β1i)[(xi+1y)2(xix)(xi+x2y)+(xiy)2(xi+1x)(xi+1+x2y)](xy)3, (3.4)
    R4u(x)=12u(3)(β2i)(xy)4[(xi+1x)(xiy)2+(xix)(xi+1y)2], (3.5)

    and

    R5u(x)=12u(3)(β3i)(xy)3[(xi+1x)2(xiy)2+(xix)2(xi+1y)2], (3.6)

    where α1i,α2i,β1i,β2i,β3i(xi,xi+1).

    Proof: By Taylor expansion of u1n(x) at x, we get

    u(xi)=2l=0u(l)(x)l!+16u(3)(α1i)(xix)3,  α1i(xi,xi+1), (3.7)

    and

    u(xi+1)=2l=0u(l)(x)l!+16u(3)(α2i)(xi+1x)3,  α2i(xi,xi+1). (3.8)

    Similarly, we have

    u(x)=2l=0u(l)(y)l!+16u(3)(β1i)(xy)3,  β1i(xi,xi+1), (3.9)

    and

    u(x)=1l=0u(l)(y)l!+12u(3)(β2i)(xy)2,  β2i(xi,xi+1), (3.10)

    and

    u(x)=u(y)+u(3)(β3i)(xy),  β3i(xi,xi+1). (3.11)

    Combining (3.7)–(3.10) together, we get the results.

    Lemma 3.2. Let ci=2(yxi)/h1,0in, for y(xm,xm+1). Then, we have

    ϕ1(ci)={2xm+1xm=      [2(xy)31(xmy)31(xm+1y)3]dx,i=m,2xi+1xi[2(xy)31(xiy)31(xi+1y)3]dx,im, (3.12)

    and

    ϕ1(ci)={2xm+1xm=      [2(xy)21(xmy)21(xm+1y)2]dx,i=m,2xi+1xi[2(xy)21(xiy)21(xi+1y)2]dx,im, (3.13)

    and

    ϕ1(ci)={2xm+1xm      [2xy1xmy1xm+1y]dx,i=m,2xi+1xi[2xy1xiy1xi+1y]dx,im. (3.14)

    Proof: By the Eqs (1.6) and (1.9), we have

    xm+1xm=      [2(xy)31(xmy)31(xm+1y)3]dx=limε0{(yεxm+xm+1y+ε)[2(xy)31(xmy)31(xm+1y)3]dx2ε}=1211=  [2(ξcm)31(cm+1)31(cm1)3]dξ=12ϕ1(cm), (3.15)
    xm+1xm=      [2(xy)21(xmy)21(xm+1y)2]dx=limε0{(yεxm+xm+1y+ε)[2(xy)21(xmy)21(xm+1y)2]dx2ε}=1211=  [2(ξcm)21(cm+1)21(cm1)2]dξ=12ϕ1(cm), (3.16)

    and

    xm+1xm      [2xy1xmy1xm+1y]dx=xm+1xm       2(xmy)(xm+1y)(xy)(xm+1y)(xy)(xmy)(xy)(xmy)(xm+1y)dx=limε0{(yεxm+xm+1y+ε)(xmx)(xm+1y)+(xm+1x)(xmy)(xy)(xmy)(xm+1y)}dx=1211  c22ξcm1(ξcm)(c2m1)dξ=12ϕ1(cm). (3.17)

    For im, we can obtain it similarly.

    Let

    E1m(x)=u(x)(xy)22[u(xm)(xmy)2u(xm+1)(xm+1y)2]u(y)[2(xy)2(xmy)2(xy)2(xm+1y)2]u(y)2[2xyxmyxyxm+1y], (3.18)

    and

    E2m(x)=u(x)(xy)32[u(xm)(xmy)3u(xm+1)(xm+1y)3]u(y)[2(xy)3(xmy)3(xy)3(xm+1y)3]u(y)2[2(xy)2(xmy)2(xy)2(xm+1y)2]u(y)4[2xyxmyxyxm+1y]. (3.19)

    Lemma 3.3. Let u(x)Cp+2[a,b] and Epm(x),p=1,2 be defined by (3.18) and (3.19) with yxm,m=0,1,2,,n, and there holds

    |xm+1xm=     E1m(x)(xy)2dx|Ch3|γ1(ξ)|, (3.20)

    and

    |xm+1xm=     E2m(x)(xy)3dx|Ch4|γ2(ξ)|. (3.21)

    Proof: For the case p=1, as u(x)C3[a,b], we get E1m(x)C3[a,b], and

    xm+1xm=      E1m(x)(xy)2dx=xm+1xmE1m(x)E1m(y)E1m(y)(xy)(xy)2dx+E1m(y)xm+1xm=      1(xy)2dx+(E1m(y))lnxm+1yyxm=xm+1xmE1m(x)E1m(y)(E1m(y))(xy)(xy)2dx+E1m(y)(1xm+1y1yxm)+(E1m(y))lnxm+1yyxm, (3.22)

    where we have used

    ba=u(x)(xy)2dx=bau(x)u(y)u(y)(xy)(xy)2dx+ba=u(y)(xy)2dx+u(y)ln|byya|. (3.23)

    Then, we have

    |xm+1xm=      E1m(x)(xy)2dx||xm+1xmE1m(x)E1m(y)(E1m(y))(xy)(xy)2dx|+|E1m(y)(1xm+1y1yxm)|+|(E1m(y))lnxm+1yyxm|Ch3|γ1(ξ)|. (3.24)

    The proof of this lemma is finished.

    Lemma 3.4. For ξ(1,1), and m1, we have

    |i=mϕ1(2i+ξ)+i=nm+1ϕ1(2i+ξ)|Ch4η4(y), (3.25)
    |i=mϕ1(2i+ξ)+i=nm+1ϕ1(2i+ξ)|Ch3η3(y), (3.26)

    and

    |i=mϕ1(2i+ξ)+i=nm+1ϕ1(2i+ξ)|Ch2η2(y). (3.27)

    Proof: By (2.5) of ϕ1(ξ), we have

    ϕ1(ξ)=2ln|1+ξ1ξ|1(1+ξ)+1(1ξ)=Q0(ξ)+ξQ0(ξ), (3.28)

    then, we have

    ϕ1(ξ)=2Q0(ξ)+ξQ0(ξ), (3.29)

    and

    ϕ1(ξ)=3Q0(ξ)+ξQ0(ξ). (3.30)

    Noting that y=a+(m+ξ+12)h, we have 2(ya)h=ξ+2m+1, and

    |i=mϕ1(2i+ξ)|Ci=m11dt|2i+ξt|4=Cξ+2m+1dxx4=C(ξ+2m+1)3=Ch3(sa)3. (3.31)

    Since b=a+nh, we have 2(by)h=2(nm)1ξ, and

    |i=nm+1ϕ1(ξ2i)|Ci=nm+111dt|2iξ+t|4=C2(nm)1ξdxx4=C[2(nm)1ξ]3=Ch3(by)3. (3.32)

    Thus, we finished the proof of lemma.

    Lemma 3.5. With the same condition of Theorem 2.1, we have

    u(x)(xy)2(u(xi)2(xiy)2+u(xi+1)2(xi+1y)2)=u(y)2[2(xy)21(xiy)21(xi+1y)2]+u(y)2[2xy1xiy1xi+1y]+R21(x,y), (3.33)

    and

    u(x)(xy)3(u(xi)2(xiy)3+u(xi+1)2(xi+1y)3)=u(y)2[2(xy)31(xmy)31(xm+1y)3]+u(y)2[2(xy)21(xmy)21(xm+1y)2]+u(y)4[2xy1xmy1xm+1y]+R31(x,y), (3.34)

    where

    R21(x,y)=u(3)(α1i)(xix)36(xiy)2+u(3)(α2i)(xi+1x)36(xi+1y)2u(3)(β1i)(xix)(xi+x2y)(xy)6(xiy)2u(3)(β1i)(xi+1x)(xi+1+x2y)(xy)6(xi+1y)2+u(3)(β2i)(xy)2[(xi+1x)(xi+1y)2+(xix)(xiy)2]2(xiy)2(xi+1y)2u(3)(β3i)(xy)[(xi+1x)2(xi+1y)2+(xix)2(xiy)2]2(xiy)2(xi+1y)2, (3.35)

    and

    R31(x,y)=u(4)(α1i)(xix)424(xiy)3+u(4)(α2i)(xi+1x)424(xi+1y)3u(4)(β1i)(xi+1x)[(xi+1y)2+(xi+1y)(xy)+(xy)2](xy)24(xiy)3u(4)(β1i)(xix)[(xiy)2+(xiy)(xy)+(xy)2](xy)24(xi+1y)3+u(4)(β2i)(xy)2[(xi+1x)(xi+1y)3+(xix)(xiy)3]12(xiy)3(xi+1y)3u(4)(β3i)(xy)[(xi+1x)2(xi+1y)2+(xix)2(xiy)2]12(xiy)3(xi+1y)3u(4)(β4i)[(xi+1x)3(xi+1y)2+(xix)3(xiy)2]12(xiy)3(xi+1y)3. (3.36)

    Proof: By Taylor expansion of u(x),u(xi),u(xi+1) at the point y, we have

    u(x)=u(y)+u(y)(xy)+u(y)(xy)22+u3(α)(xy)33,α(x,y),

    and

    u(x)(xy)2(u(xi)2(xiy)2+u(xi+1)2(xi+1y)2)=2(xi+1y)2(xiy)2u(x)(xiy)2(xy)2u(xi+1)(xi+1y)2(xy)2u(xi)(xy)2(xiy)2(xi+1y)2=u(y)2[2(xy)21(xiy)21(xi+1y)2]+u(y)2[2xy1xiy1xi+1y]+R21(x,y), (3.37)

    which completed the the proof of (3.33). The proof (3.34) can be similarly obtained.

    Proof of Theorem 2.1: By Lemma 3.1, we get

    ba=u(x)(xy)2dxn1i=0(u(xi)h2(xiy)2+u(xi+1)h2(xi+1y)2)=n1i=0xi+1xi=     [u(x)(xy)2(u(xi)2(xiy)2+u(xi+1)2(xi+1y)2)]dx=n1i=0,imu(y)2xi+1xi[2(xy)21(xiy)21(xi+1y)2]dx+u(y)2xm+1xm=      [2(xy)21(xmy)21(xm+1y)2]dx+u(y)2n1i=0,imxi+1xi[2xy1xiy1xi+1y]dx+u(y)2xm+1xm      [2xy1xmy1xm+1y]dx+n1i=0,imxi+1xiR21(x,y)dx+xm+1xm=      E1m(x)(xy)2dx=u(y)2S1(ξ)+u(y)2S1(ξ)+R1n(u;y), (3.38)

    where we have used the (3.18) of E1m(x)

    xm+1xm=      [u(x)(xy)2(u(xi)2(xiy)2+u(xi+1)2(xi+1y)2)]dx=xm+1xm=      E1m(x)(xy)2dx+u(y)2xm+1xm=      [2(xy)21(xmy)21(xm+1y)2]dx+u(y)2xm+1xm=      [2xy1xmy1xm+1y]dx, (3.39)

    and

    R1n(u;y)=R11(u;y)+R12(u;y)+R13(u;y),

    and

    R11(u;y)=n1i=0,imxi+1xiR21(x,y)dx=n1i=0,imxi+1xiu(3)(α1i)(xix)36(xiy)2dx+n1i=0,imxi+1xiu(3)(α2i)(xi+1x)36(xi+1y)2dxn1i=0,imxi+1xiu(3)(β1i)(xix)(xi+x2y)(xy)6(xiy)2dxn1i=0,imxi+1xiu(3)(β1i)(xi+1x)(xi+1+x2y)(xy)6(xi+1y)2dx+n1i=0,imxi+1xiu(3)(β2i)(xy)2[(xi+1x)(xi+1y)2+(xix)(xiy)2]2(xiy)2(xi+1y)2dxn1i=0,imxi+1xiu(3)(β3i)(xy)[(xi+1x)2(xi+1y)2+(xix)2(xiy)2]2(xiy)2(xi+1y)2dx. (3.40)
    R12(u;y)=xm+1xm=      E1m(x)(xy)2dx. (3.41)
    R13(u;y)=u(y)2[i=mϕ1(2i+ξ)+i=nm+1ϕ1(2i+ξ)],+u(y)2[i=mϕ1(2i+ξ)+i=nm+1ϕ1(2i+ξ)]. (3.42)

    Now, we estimate R1n(u;y). By using (xy)2=(xˆxi+ˆxiy)2=(xˆxi)2+2(xˆxi)(ˆxiy)2+(ˆxiy)2 and xy=xˆxi+ˆxiy, we have

    R11(u;y)=n1i=0,imxi+1xi[u(3)(α1i)6+u(3)(β1i)6+u(3)(β2i)2+u(3)(β3i)2](xix)3(xiy)2dx+n1i=0,imxi+1xi[u(3)(α2i)6+u(3)(β1i)6+u(3)(β2i)2+u(3)(β3i)2](xi+1x)3(xi+1y)2dx+n1i=0,imxi+1xiu(3)(β1i)+2u(3)(β2i)+u(3)(β3i)2(xix)2xiydx+n1i=0,imxi+1xiu(3)(β1i)+2u(3)(β2i)+u(3)(β3i)2(xi+1x)2xi+1ydx+n1i=0,imxi+1xi[u(3)(β2i)+u(3)(β3i)](xi+xi+12x)dx. (3.43)

    For the first part of R11(u;y), we have

    |n1i=0,imxi+1xi[u(3)(α1i)6+u(3)(β1i)6+u(3)(β2i)2+u(3)(β3i)2](xix)3(xiy)2dx|Ch3n1i=0,imxi+1xi1|xis|2dxCγ2(ξ)h2. (3.44)

    For the second part of R11(u;y), we similarly have

    |n1i=0,imxi+1xi[u(3)(α2i)6+u(3)(β1i)6+u(3)(β2i)2+u(3)(β3i)2](xi+1x)3(xi+1y)2dx|Cγ2(ξ)h2. (3.45)

    For the third part of R11(u;y),

    |n1i=0,imxi+1xiu(3)(β1i)+2u(3)(β2i)+u(3)(β3i)2(xix)2xiydx|Ch2n1i=0,imxi+1xi1|xis|dxCγ1(ξ)h2. (3.46)

    For the fourth part of R11(u;y),

    |n1i=0,imxi+1xiu(3)(β1i)+2u(3)(β2i)+u(3)(β3i)2(xi+1x)2xi+1ydx|Cγ1(ξ)h2. (3.47)

    For the last part of R11(u;y), we have

    |n1i=0,imxi+1xi[u(3)(β2i)+u(3)(β3i)](xi+xi+12x)dx|=|n1i=0,im[u(3)(ξ2i)+u(3)(ξ3i)]xi+1xi(xix)dx+h2n1i=0,im[u(3)(β2i)+u(3)(β3i)]xi+1xidx||12n1i=0,im[u(3)(ξ2i)+u(3)(ξ3i)]xi+1xi(xi+h2x)dx|+|h22n1i=0,im[u(3)(ξ2i)+u(3)(ξ3i)u(3)(β2i)u(3)(β3i)]|=|h22n1i=0,im[u(3)(ξ2i)+u(3)(ξ3i)u(3)(β2i)u(3)(β3i)]|Ch2, (3.48)

    where ξ2i,ξ3i,β2i,β3i(xi,xi+1).

    For R12(u;y) and R13(u;y), by Lemmas 3.3 and 3.4, then, we get

    |R1n(u;y)||R11(u;y)|+|R12(u;y)|+|R13(u;y)|C(γ1(ξ)+η2(y))h2, (3.49)

    and we finished the proof of Theorem 2.1.

    By Lemma 3.1, we have

    ba=u(x)(xy)3dxn1i=0(u(xi)h2(xiy)3+u(xi+1)h2(xi+1y)3)=n1i=0,imu(y)2xi+1xi[2(xy)31(xiy)31(xi+1y)3]dx+u(y)2xm+1xm=      [2(xy)31(xmy)31(xm+1y)3]dx+n1i=0,imu(y)2xi+1xi[2(xy)21(xiy)21(xi+1y)2]dx+u(y)2xm+1xm=      [2(xy)21(xmy)21(xm+1y)2]dx+u(y)4n1i=0,imxi+1xi[2xy1xiy1xi+1y]dx+u(y)4xm+1xm      [2xy1xmy1xm+1y]dx+n1i=0,imxi+1xiR31(x,y)dx+xm+1xm=      E2m(x)(xy)3dx=u(y)2h2S1(ξ)+u(y)2hS1(ξ)+u(y)4S1(ξ)+R2n(u;y), (3.50)

    where we have used the identity of (3.19),

    xm+1xm=      [u(x)(xy)3(u(xi)2(xiy)3+u(xi+1)2(xi+1y)3)]dx=xm+1xm=      E2m(x)(xy)3dx+u(y)2xm+1xm=      [2(xy)31(xmy)31(xm+1y)3]dx+u(y)2xm+1xm=      [2(xy)21(xmy)21(xm+1y)2]dx+u(y)4xm+1xm=      [2xy1xmy1xm+1y]dx, (3.51)

    and

    R2n(u;y)=R21(u;y)+R22(u;y)+R23(u;y).
    R21(u;y)=n1i=0,imxi+1xiR31(x,y)dx=n1i=0,imxi+1xiu(4)(α1i)(xix)424(xiy)3dx+n1i=0,imxi+1xiu(4)(α2i)(xi+1x)424(xi+1y)3dxn1i=0,imxi+1xiu(4)(β1i)(xi+1x)[(xi+1y)2+(xi+1y)(xy)+(xy)2](xy)24(xiy)3dxn1i=0,imxi+1xiu(4)(β1i)(xix)[(xiy)2+(xiy)(xy)+(xy)2](xy)24(xi+1y)3dx+n1i=0,imxi+1xiu(4)(β2i)(xy)2[(xi+1x)(xi+1y)3+(xix)(xiy)3]12(xiy)3(xi+1y)3dxn1i=0,imxi+1xiu(4)(β3i)(xy)[(xi+1x)2(xi+1y)2+(xix)2(xiy)2]12(xiy)3(xi+1y)3dxn1i=0,imxi+1xiu(4)(β4i)[(xi+1x)3(xi+1y)2+(xix)3(xiy)2]12(xiy)3(xi+1y)3dx. (3.52)
    R22(u;y)=xm+1xm=     E2m(x)(xy)3dx. (3.53)
    R23(u;y)=u(y)4[i=mϕ1(2i+ξ)+i=nm+1ϕ1(2i+ξ)],+u(y)2[i=mϕ1(2i+ξ)+i=nm+1ϕ1(2i+ξ)],+u(y)2[i=mϕ1(2i+ξ)+i=nm+1ϕ1(2i+ξ)]. (3.54)

    For R22(u;y) and R32(u;y), by Lemmas 3.3 and 3.4, we get

    |R2n(u;y)||R21(u;y)|+|R22(u;y)|+|R23(u;y)|C[γ(3)(ξ)+η3(y)]h2, (3.55)

    and the proof Theorem 2.1 is completed.

    Corollary 3.1. Under same assumption of Theorem 2.1, we have

    |Ep1n(u;y)|C[γ(p1)(ξ)+ηp+2(y)]h2, (3.56)

    and η(y) is defined as (1.18).

    From Theorem 2.1, modify trapezoidal quadrature Ⅰ is presented

    ˜Q11n(u;y)=Q11n(u;y)u(y)2S1(ξ), (3.57)
    [0.5cm]˜Q21n(u;y)=Q21n(u;y)u(y)2S1(ξ), (3.58)

    as well as modify trapezoidal quadrature Ⅱ

    ˜˜Q11n(u;y)=˜Q11n(u;y)u(y)2S1(ξ), (3.59)
    [0.5cm]˜˜Q21n(u;y)=˜Q21n(u;y)u(y)2S1(ξ), (3.60)

    and error functional

    ˜E11n(u;y)=ba=u(x)(xy)2dx˜Q11n(u;y), (3.61)
    [0.5cm]˜E21n(u;y)=ba=u(x)(xy)3dx˜Q21n(u;y), (3.62)
    ˜˜E11n(u;y)=ba=u(x)(xy)2dx˜˜Q11n(u;y), (3.63)
    [0.5cm]˜˜E21n(u;y)=ba=u(x)(xy)3dx˜˜Q21n(u;y). (3.64)

    Then, we have the following.

    Corollary 3.2. Under the same assumption of Theorem 2.1, for the modify trapezoidal quadrature I, we have

    |˜Ep1n(u;y)|[γ(p1)(ξ)+ηp+2(y)]h2, (3.65)

    where γ(ξ) is defined as (1.13).

    In the year of 2013, we have presented the results [18]

    Q00n(u;y):=ba u1n(x)xiydx=n1i=0ω0i(y)u(xi)=ba u(x)xydxE01n(u;y), (3.66)

    where E01n(f;y)=ba u(x)xydxba u1n(x)xiydx, and

    ω0i(y)=h2(xiy)+h2(xi+1y) (3.67)

    are the Cote coefficients.

    Theorem 3.1. Assume u(x)C2[a,b]. For the trapezoidal quadrature Q00n(u;y) defined as (3.66), assume that y=x[m]+(1+ξ)h/2, and there holds

    E01n(u;y)=u(y)tanξπ2+O(h2), (3.68)

    Now, we present the following theorem:

    Theorem 3.2. Assume u(x)Cp+2[a,b]. Let Qp1n(u;y) be computed by (2.2), assume that y=xm+(1+ξ)h/2,yˆxm, and there holds

    Ep1n(u;y)=u(y)hpS(p)1(ξ)++u(p1)(y)(p1)!hS(1)1(ξ)+u(p)p!(y)S(0)1(ξ)+Rpn(u;y), (3.69)

    where

    |Rpn(u;y)|C[γ(p+1)(ξ)+ηp+2(y)]h2, (3.70)

    and γ(ξ) is defined as (1.13).

    This theorem can be proved similarly as Theorem 1, and here we omit it.

    Let

    Q0(x)=12ln|x+1x1|,Q1(x)=xQ0(x)1 (4.1)

    be the Legendre function of the second kind and Qn(x) associated with the Pn(x), defined by (cf.[1]).

    We also define

    W(u,ξ):=u(ξ)+i=0u(2i+ξ)+i=0u(2i+ξ),ξ(1,1). (4.2)

    Then, by (4.2) of W,

    W(Q0)(ξ)=12ln1+ξ1ξ+12i=1(ln2i+1+ξ2i1+ξ+ln2i1ξ2i+1ξ)=12limiln2i+1+ξ2i+1ξ=0,
    W(xQ0)(ξ)=ξ1ξ2i=1(2i+ξ(2i+ξ)21+2i+ξ(2i+ξ)21)=12limnk=nk=n1k+12+ξ2=π2tanπ(1+ξ)2,

    and it follows that

    S1(ϕ1,ξ)=W(Q0+xQ0,ξ)=πtanπ(ξ+1)2. (4.3)

    Then, we have

    S1(ϕ1,ξ)=ddξ(S1(ϕ1,ξ))=W(2Q0+xQ0,ξ)=π2sin2(π(ξ+1)2), (4.4)
    S1(ϕ1,ξ)=ddξ(S1(ϕ1,ξ))=W(3Q0+xQ(3)0,ξ)=π3cos(π(ξ+1)2)sin3(π(ξ+1)2), (4.5)

    where we have used the identify

    π3cos(πx)sin3(πx)=n=1(x+n)3, (4.6)
    π2sin2(πx)=n=1(x+n)2, (4.7)
    πcos(πx)sin(πx)=n=1x+n. (4.8)

    In this part, some examples are reported to illustrate our theorem.

    Example 5.1. Consider the hypersingular integral with u(x)=x4+1 and with a=0,b=1, and

    ba=x4+1(xy)2dx=12y46y32y2y+33y23y+4y3log1yy,y(0,1). (5.1)

    In Tables 1 and 2, error and a posterior estimation of the trapezoidal rule are are presented, and the extrapolation method can be found in reference [12].

    Table 1.  Errors of the trapezoidal rule s=0.25.
    0 h2extra h3extra
    40 -1.8838e-01
    80 -9.6722e-02 -5.0630e-03
    160 -4.9011e-02 -1.3000e-03 -4.5696e-05
    320 -2.4670e-02 -3.2954e-04 -6.0458e-06
    640 -1.2377e-02 -8.2968e-05 -7.7751e-07

     | Show Table
    DownLoad: CSV
    Table 2.  A posteriori error of the trapezoidal rule s=0.25.
    a posteriori error a posteriori error a posteriori error
    40 -9.1659e-02
    80 -4.7711e-02 -1.2543e-03
    160 -2.4341e-02 -3.2349e-04 -5.6643e-06
    320 -1.2294e-02 -8.2191e-05 -7.5262e-07
    640 -6.1779e-03 -2.0717e-05 -9.6989e-08

     | Show Table
    DownLoad: CSV

    The uniform meshes are chosen to test convergence rate of the trapezoidal quadrature Q11n(u;y), modified Ⅰ trapezoidal quadrature ˜Q11n(u;y), and modified Ⅱ trapezoidal quadrature ˜˜Q11n(u;y) with the dynamic point with y=x[n/4]+(1+ξ)h/2.

    Table 3 shows that when the local coordinate of singular point is ξ, the modified Ⅱ trapezoidal quadrature ˜˜Q11n(u;y) reaches O(h2). From the Table 4, the modified Ⅰ trapezoidal quadrature ˜Q11n(u;y) can reach O(h2) at ξ=0; as for ξ0, there are no convergence rates. From the Table 5, for the trapezoidal quadrature Q11n(u;y), there are no convergence rates.

    Table 3.  Errors of ˜˜Q11n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 8.8788e-03 9.6756e-03 8.1724e-03 7.9549e-03 9.9637e-03
    64 2.4241e-03 2.5337e-03 2.3211e-03 2.2881e-03 2.5718e-03
    128 6.3377e-04 6.4814e-04 6.1985e-04 6.1530e-04 6.5303e-04
    256 1.6206e-04 1.6390e-04 1.6025e-04 1.5965e-04 1.6452e-04
    512 4.0976e-05 4.1209e-05 4.0745e-05 4.0666e-05 4.1284e-05
    1024 1.0302e-05 1.0331e-05 1.0273e-05 1.0272e-05 1.0350e-05
    hα 1.9503 1.9742 1.9271 1.9194 1.9822

     | Show Table
    DownLoad: CSV
    Table 4.  Errors of ˜Q11n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 8.8788e-03 2.2501e-01 -2.4874e-01 -4.4986e-01 3.7175e-01
    64 2.4241e-03 2.0823e-01 -2.2295e-01 -3.9375e-01 3.5340e-01
    128 6.3377e-04 2.0164e-01 -2.0986e-01 -3.6674e-01 3.4608e-01
    256 1.6206e-04 1.9882e-01 -2.0317e-01 -3.5339e-01 3.4292e-01
    512 4.0976e-05 1.9754e-01 -1.9978e-01 -3.4673e-01 3.4146e-01
    1024 1.0302e-05 1.9694e-01 -1.9807e-01 -3.4341e-01 3.4076e-01
    hα 1.9503 - - - -

     | Show Table
    DownLoad: CSV
    Table 5.  Errors of Q11n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -3.1739e+02 -6.3422e+02 -6.3543e+02 -1.2711e+03 -1.2683e+03
    64 -6.3444e+02 -1.2684e+03 -1.2695e+03 -2.5391e+03 -2.5366e+03
    128 -1.2686e+03 -2.5366e+03 -2.5377e+03 -5.0755e+03 -5.0730e+03
    256 -2.5368e+03 -5.0731e+03 -5.0741e+03 -1.0148e+04 -1.0146e+04
    512 -5.0733e+03 -1.0146e+04 -1.0147e+04 -2.0294e+04 -2.0292e+04
    1024 -1.0146e+04 -2.0292e+04 -2.0293e+04 -4.0586e+04 -4.0584e+04
    hα - - - - -

     | Show Table
    DownLoad: CSV

    Example 5.2. Consider the hypersingular integral u(x)=x3, and

    ba=x3(xy)p+1dx={32+3y+3y2log1yy+1y1,p=1,1+y2+y36y2+6y2(y1)2+3ylog1yy,p=2. (5.2)

    The uniform meshes are chosen to test convergence rate of the trapezoidal quadrature Q21n(u;y), modified Ⅰ trapezoidal quadrature ˜Q21n(u;y), and modified Ⅱ trapezoidal quadrature ˜˜Q21n(u;y) with y=x[n/4]+(1+ξ)h/2 and y=a+(1+ξ)h/2.

    For the case p=2 with y=x[n/4]+(1+ξ)h/2, the Table 6 shows that when the local coordinate is ξ of the singular point, modified Ⅱ trapezoidal quadrature ˜˜Q21n(u;y) reaches O(h2). Table 7 shows that the modified Ⅰ trapezoidal quadrature ˜Q21n(u;y) can reach O(h2) at the ξ=0; as for ξ0, there are no convergence rates. Table 8 shows the trapezoidal quadrature Q21n(u;y), and there are no convergence rates.

    Table 6.  Errors ˜˜Q21n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 2.2331e-04 2.0783e-04 2.3986e-04 2.4563e-04 2.0289e-04
    64 5.1885e-05 5.0039e-05 5.3792e-05 5.4442e-05 4.9437e-05
    128 1.2505e-05 1.2280e-05 1.2734e-05 1.2808e-05 1.2208e-05
    256 3.0696e-06 3.0418e-06 3.0976e-06 3.1266e-06 3.0139e-06
    512 7.6042e-07 7.5711e-07 7.6376e-07 6.0912e-07 9.0778e-07
    1024 1.8924e-07 1.8902e-07 1.8891e-07 1.4122e-06 -1.0206e-06
    hα 2.0409 2.0205 2.0620 1.4885 1.5270

     | Show Table
    DownLoad: CSV
    Table 7.  Errors of ˜Q21n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 2.2331e-04 2.4300e+00 -2.5768e+00 -4.5059e+00 4.1663e+00
    64 5.1885e-05 2.3931e+00 -2.4666e+00 -4.2935e+00 4.1236e+00
    128 1.2505e-05 2.3746e+00 -2.4114e+00 -4.1873e+00 4.1023e+00
    256 3.0696e-06 2.3654e+00 -2.3838e+00 -4.1342e+00 4.0917e+00
    512 7.6042e-07 2.3608e+00 -2.3700e+00 -4.1076e+00 4.0864e+00
    1024 1.8924e-07 2.3585e+00 -2.3631e+00 -4.0943e+00 4.0837e+00
    hα 2.0409 - - - -

     | Show Table
    DownLoad: CSV
    Table 8.  Errors of Q21n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -6.6851e+01 9.6463e+02 -1.4425e+03 -4.9202e+03 3.4137e+03
    64 -1.2595e+02 3.9158e+03 -4.8156e+03 -1.6539e+04 1.3703e+04
    128 -2.4433e+02 1.5771e+04 -1.7516e+04 -6.0404e+04 5.4904e+04
    256 -4.8117e+02 6.3295e+04 -6.6732e+04 -2.3063e+05 2.1980e+05
    512 -9.5490e+02 2.5359e+05 -2.6041e+05 -9.0103e+05 8.7954e+05
    1024 -1.9024e+03 1.0152e+06 -1.0288e+06 -3.5617e+06 3.5189e+06
    hα - - - - -

     | Show Table
    DownLoad: CSV

    Table 9 shows y=a+(ξ+1)h/2, and modified Ⅱ trapezoidal quadrature ˜˜Q21n(u;y) reaches O(h). Table 10 shows that the modified Ⅰ trapezoidal quadrature ˜Q21n(u;y) can reach O(h) at the ξ=0; as for ξ0, there are no convergence rates which agree with our Theorem 2.1. Table 11 shows the trapezoidal quadrature Q21n(u;y), and there are also convergence rates O(h) because of f(x)=0 at the end of intervals.

    Table 9.  Errors of ˜˜Q21n(u;y) with y=a+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -1.9101e-04 -1.3025e-03 6.1469e-06 2.6040e-05 -2.5193e-03
    64 -9.7046e-05 -6.5199e-04 6.7781e-07 1.0325e-05 -1.2602e-03
    128 -4.8708e-05 -3.2609e-04 5.5555e-08 4.8457e-06 -6.3014e-04
    256 -2.4377e-05 -1.6306e-04 6.6810e-09 2.3845e-06 -3.1508e-04
    512 -1.2191e-05 -8.1529e-05 7.5892e-09 1.1875e-06 -1.5754e-04
    1024 -6.0960e-06 -4.0765e-05 4.3221e-09 5.9317e-07 -7.8770e-05
    hα 9.9393e-01 9.9956e-01 2.0948 1.0912 9.9985e-01

     | Show Table
    DownLoad: CSV
    Table 10.  Errors of ˜Q21n(u;y) with y=a+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -1.9101e-04 7.2329e-02 -2.2089e-01 -4.2508e-01 8.2503e-02
    64 -9.7046e-05 3.6164e-02 -1.1045e-01 -2.1254e-01 4.1251e-02
    128 -4.8708e-05 1.8082e-02 -5.5223e-02 -1.0627e-01 2.0625e-02
    256 -2.4377e-05 9.0408e-03 -2.7612e-02 -5.3136e-02 1.0313e-02
    512 -1.2191e-05 4.5204e-03 -1.3806e-02 -2.6568e-02 5.1563e-03
    1024 -6.0960e-06 2.2602e-03 -6.9029e-03 -1.3284e-02 2.5782e-03
    hα 9.9393e-01 1.0000 9.9999e-01 1.0000 1.0000

     | Show Table
    DownLoad: CSV
    Table 11.  Errors of Q21n(u;y) with y=a+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -2.3151e-01 -1.3051e-02 -2.0794e+00 -6.8802e+00 1.0773e-02
    64 -1.1576e-01 -6.5264e-03 -1.0397e+00 -3.4401e+00 5.3861e-03
    128 -5.7878e-02 -3.2633e-03 -5.1984e-01 -1.7200e+00 2.6930e-03
    256 -2.8939e-02 -1.6317e-03 -2.5992e-01 -8.6002e-01 1.3465e-03
    512 -1.4470e-02 -8.1583e-04 -1.2996e-01 -4.3001e-01 6.7324e-04
    1024 -7.2348e-03 -4.0791e-04 -6.4981e-02 -2.1501e-01 3.3662e-04
    hα 9.9999e-01 9.9996e-01 1.0000 1.0000 1.0000

     | Show Table
    DownLoad: CSV

    For the case p=1 with y=x[n/4]+(1+ξ)h/2, Table 12 shows that when the local coordinate is ξ of singular point, modified Ⅱ trapezoidal quadrature ˜˜Q11n(u;y) reaches O(h2). Table 13 shows that modified Ⅰ trapezoidal quadrature ˜Q11n(u;y) can reach O(h2) at the ξ=0; as for ξ0, there are no convergence rates which agree with our Theorem 2.1. Table 14 shows the trapezoidal quadrature Q11n(u;y), and there are no convergence rates.

    Table 12.  Errors of ˜˜Q11n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -4.1857e-05 -4.5224e-05 -3.8240e-05 -3.6975e-05 -4.6293e-05
    64 -1.1283e-05 -1.1681e-05 -1.0870e-05 -1.0729e-05 -1.1810e-05
    128 -2.9187e-06 -2.9671e-06 -2.8694e-06 -2.8527e-06 -2.9830e-06
    256 -7.4167e-07 -7.4764e-07 -7.3565e-07 -7.3362e-07 -7.4961e-07
    512 -1.8690e-07 -1.8764e-07 -1.8616e-07 -1.8594e-07 -1.8792e-07
    1024 -4.6911e-08 -4.7003e-08 -4.6819e-08 -4.6655e-08 -4.6906e-08
    hα 1.9603 1.9820 1.9348 1.9261 1.9894

     | Show Table
    DownLoad: CSV
    Table 13.  Errors of ˜Q11n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -4.1857e-05 6.2639e-01 -7.0471e-01 -1.2439e+00 1.0632e+00
    64 -1.1283e-05 6.0759e-01 -6.4558e-01 -1.1293e+00 1.0416e+00
    128 -2.9187e-06 5.9829e-01 -6.1699e-01 -1.0741e+00 1.0309e+00
    256 -7.4167e-07 5.9366e-01 -6.0294e-01 -1.0470e+00 1.0256e+00
    512 -1.8690e-07 5.9135e-01 -5.9597e-01 -1.0336e+00 1.0229e+00
    1024 -4.6911e-08 5.9020e-01 -5.9251e-01 -1.0269e+00 1.0216e+00
    hα 1.9603 - - - -

     | Show Table
    DownLoad: CSV
    Table 14.  Errors of Q11n(u;y) with y=x[n/4]+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -5.9192e+00 -1.0198e+01 -1.3619e+01 -2.7816e+01 -1.9936e+01
    64 -1.0824e+01 -2.0071e+01 -2.3293e+01 -4.7103e+01 -3.9683e+01
    128 -2.0679e+01 -3.9813e+01 -4.2937e+01 -8.6361e+01 -7.9166e+01
    256 -4.0411e+01 -7.9292e+01 -8.2368e+01 -1.6521e+02 -1.5813e+02
    512 -7.9886e+01 -1.5825e+02 -1.6130e+02 -3.2307e+02 -3.1604e+02
    1024 -1.5884e+02 -3.1616e+02 -3.1920e+02 -6.3887e+02 -6.3187e+02
    hα - - - - -

     | Show Table
    DownLoad: CSV

    Table 15 shows y=a+(ξ+1)h/2 and that modified Ⅱ trapezoidal quadrature ˜˜Q11n(u;y) reaches O(h2). Table 16 shows that modified Ⅰ trapezoidal quadrature ˜Q11n(u;y) can reach O(h2) at the ξ=0; as for ξ0, there is also convergence rate O(h2). Table 17 shows the trapezoidal quadrature Q11n(u;y), and there are also convergence rate O(h2) because of f(x)=0 at the end of intervals.

    Table 15.  Errors of ˜˜Q11n(u;y) with y=a+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -8.3846e-05 -7.4701e-05 -8.4888e-05 -8.4799e-05 -6.5134e-05
    64 -2.0973e-05 -1.8678e-05 -2.1249e-05 -2.1233e-05 -1.6285e-05
    128 -5.2440e-06 -4.6697e-06 -5.3139e-06 -5.3104e-06 -4.0713e-06
    256 -1.3110e-06 -1.1674e-06 -1.3286e-06 -1.3277e-06 -1.0178e-06
    512 -3.2776e-07 -2.9186e-07 -3.3215e-07 -3.3194e-07 -2.5446e-07
    1024 -8.1941e-08 -7.2965e-08 -8.3037e-08 -8.2985e-08 -6.3614e-08
    hα 1.9998 1.9999 1.9995 1.9994 2.0000

     | Show Table
    DownLoad: CSV
    Table 16.  Errors of ˜Q11n(u;y) with y=a+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -8.3846e-05 5.0054e-04 -5.2621e-03 -1.1155e-02 3.7769e-04
    64 -2.0973e-05 1.2513e-04 -1.3155e-03 -2.7889e-03 9.4421e-05
    128 -5.2440e-06 3.1283e-05 -3.2889e-04 -6.9722e-04 2.3605e-05
    256 -1.3110e-06 7.8207e-06 -8.2222e-05 -1.7431e-04 5.9013e-06
    512 -3.2776e-07 1.9552e-06 -2.0556e-05 -4.3576e-05 1.4753e-06
    1024 -8.1941e-08 4.8880e-07 -5.1389e-06 -1.0894e-05 3.6883e-07
    hα 1.9998 2.0000 2.0000 2.0000 2.0000

     | Show Table
    DownLoad: CSV
    Table 17.  Errors of Q11n(u;y) with y=a+(1+ξ)h/2.
    n ξ=0 ξ=0.5 ξ=0.5 ξ=2/3 ξ=2/3
    32 -1.2886e-03 1.9935e-04 -1.3394e-02 -3.3466e-02 1.9920e-04
    64 -3.2217e-04 4.9834e-05 -3.3486e-03 -8.3666e-03 4.9799e-05
    128 -8.0543e-05 1.2458e-05 -8.3716e-04 -2.0916e-03 1.2450e-05
    256 -2.0136e-05 3.1145e-06 -2.0929e-04 -5.2291e-04 3.1124e-06
    512 -5.0340e-06 7.7863e-07 -5.2322e-05 -1.3073e-04 7.7810e-07
    1024 -1.2585e-06 1.9466e-07 -1.3081e-05 -3.2682e-05 1.9453e-07
    hα 2.0000 2.0000 2.0000 2.0000 2.0000

     | Show Table
    DownLoad: CSV

    In this paper, hypersingular integrals are studied by the composite trapezoidal quadrature on the interval. With the linear transformation of subintervals to the identity intervals, the error functional is obtained related with the special function. The modify trapezoidal rule is presented, with the help of second term equal zeros which gives the superconvergence phenomenon. In this paper of [18], we have proved the results that the error functional has related with the special function

    πtanπx=n=n=1n+x

    for the Cauchy principal integrals. In this paper, we have presented the results that the error functional has related with the special function

    ddx(πtanπx)=π2cos2(πx)=n=n=1(x+n)2

    for the hypersingular integrals. Based on the above results, we conjecture that there are certain relationship between the hypersingular integral ba=u(x)(xy)p+1dx,p=0,1,, and the special function

    dpdxp(πtanπx)=dpdxp(n=n=1n+x),p=0,1,.

    We will give further investigation to illustrate the relationship.

    The research prospects regarding the calculation methods of hypersingular integrals that might center on the following aspects in the future. We construct efficient numerical approaches to handle two-dimensional and three-dimensional problems in practical applications. For fractional order hyper singular integrals emerging in fractional order partial differential equations, corresponding numerical methods are developed for numerical computations and theoretical investigations. We establish cost-effective program packages suitable for the engineering community to facilitate the application of super singular integration calculation methods. With the advancement of computing technology and the introduction of novel algorithms, the calculation method of hypersingular integrals will become more efficient and precise, thereby exerting a greater impact in various application fields.

    ba= — —- —- hypersingular integrals

    ba — —- —- Cauchy Principal integral

    Ip(u,y) — —- —- denotes a hypersingular integrals with p+1 singular order

    ukn(x) — —- —- Lagrangian polynomial interpolation of degree k

    Qpkn(u;y) — —- —- k degree composite Newton-Cotes quadrature for Ip(u,y)

    Epkn(u;y) — —- —- error functional of k degree composite Newton-Cotes quadrature for Ip(u,y)

    γ(ξ) — —- —- distance of singular point to the mesh point

    η(y) — —- —- distance of singular point s to the boundary point.

    ωpi(y) — —- —- Cote coefficients of Ip(u,y) with ukn(x)

    ϕ1(x) — —- —- special function of Ip(u,y)

    S1(ξ) — —- —- linear operator

    S1(ξ) — —- —- first order derivative of linear operator

    S1(ξ) — —- —- second order derivative of linear operator

    Rpn(u;y) — —- —- remain part of Epkn(u;y)

    E1m(x) — —- —- errors of

    E1m(x)=u(x)(xy)22[u(xm)(xmy)2u(xm+1)(xm+1y)2]u(y)[2(xy)2(xmy)2(xy)2(xm+1y)2]u(y)2[2xyxmyxyxm+1y]

    subinterval [xm,xm+1]

    E2m(x) — —- —- errors of

    E2m(x)=u(x)(xy)32[u(xm)(xmy)3u(xm+1)(xm+1y)3]u(y)[2(xy)3(xmy)3(xy)3(xm+1y)3]u(y)2[2(xy)2(xmy)2(xy)2(xm+1y)2]u(y)4[2xyxmyxyxm+1y].

    subinterval [xm,xm+1]

    R11(u;y), — —- —- first part of R1n(u;y)

    R12(u;y) — —- —- second part of R1n(u;y)

    R13(u;y) — —- —- third part of R1n(u;y)

    R21(u;y), — —- —- first part of R2n(u;y)

    R22(u;y) — —- —- second part of R2n(u;y)

    R23(u;y) — —- —- third part of R2n(u;y)

    Xiaoping Zhang: conceptualization, methodology, investigation, funding acquisition, writing-original draft; Jin Li: conceptualization, investigation, writing-review and editing methodology, software, writing-original draft. All authors have read and approved the final version of the manuscript for publication.

    The work of Jin Li was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

    The authors declare there is no conflict of interest.



    [1] L. C. Andrews, Special functions of mathematics for engineers, 2 Eds., New York: McGraw-Hill Inc, 1992.
    [2] U. J. Choi, S. W. Kim, B. I. Yun, Improvement of the asymptotic behaviour of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals, Int. J. Numer. Meth. Eng., 61 (2004), 496–513. http://dx.doi.org/10.1002/nme.1077 doi: 10.1002/nme.1077
    [3] K. Diethdm, Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on piecewise linear interpolation, Approx. Theory & its Appl., 11 (1995), 78–89. http://dx.doi.org/10.1007/BF02836832 doi: 10.1007/BF02836832
    [4] Q. K. Du, Evaluations of certain hypersingular integrals on interval, Int. J. Numer. Meth. Eng., 51 (2001), 1195–1210. http://dx.doi.org/10.1002/nme.218 doi: 10.1002/nme.218
    [5] D. Elliott, E. Venturino, Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals, Numer. Math., 77 (1997), 453–465. http://dx.doi.org/10.1007/s002110050295 doi: 10.1007/s002110050295
    [6] J. Huang, Z. Wang, R. Zhu, Asymptotic error expansions for hypersingular integrals, Adv. Comput. Math., 38 (2013), 257–279. http://dx.doi.org/10.1007/s10444-011-9236-x doi: 10.1007/s10444-011-9236-x
    [7] T. Hasegawa, Uniform approximations to finite Hilbert transform and its derivative, J. Comput. Appl. Math., 163 (2004), 127–138. http://dx.doi.org/10.1016/J.CAM.2003.08.059 doi: 10.1016/J.CAM.2003.08.059
    [8] C. Y. Hui, D. Shia, Evaluations of hypersingular integrals using Gaussian quadrature, Int. J. Numer. Meth. Eng., 44 (1999), 205–214. https://dx.doi.org/10.1002/(SICI)1097-0207(19990120)44:2<205:AID-NME499>3.0.CO;2-8 doi: 10.1002/(SICI)1097-0207(19990120)44:2<205:AID-NME499>3.0.CO;2-8
    [9] N. I. Ioakimidis, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives, Math. Comp., 44 (1985), 191–198. http://dx.doi.org/10.2307/2007802 doi: 10.2307/2007802
    [10] J. Li, J. M. Wu, D. H. Yu, Generalized extrapolation for computation of hypersingular integrals in boundary element methods, CMES-Comp. Model. Eng., 42 (2009), 151–176. https://dx.doi.org/10.3970/cmes.2009.042.151 doi: 10.3970/cmes.2009.042.151
    [11] J. Li, D. H. Yu, The superconvergence of certain two-dimensional Cauchy principal value integrals, CMES-Comp. Model. Eng., 71 (2011), 331–346. http://dx.doi.org/10.3970/cmes.2011.071.331 doi: 10.3970/cmes.2011.071.331
    [12] J. Li, D. H. Yu, The superconvergence of certain two-dimensional Hilbert singular integrals, CMES-Comp. Model. Eng., 82 (2011), 233–252. http://dx.doi.org/10.32604/cmes.2011.082.233 doi: 10.32604/cmes.2011.082.233
    [13] J. Li, D. H. Yu, The erroe estimate of Newton-Cotes methods to compute hypersingular integral, Mathematica Numerica Sinica, 33 (2011), 77–86. http://dx.doi.org/10.12286/jssx.2011.1.77 doi: 10.12286/jssx.2011.1.77
    [14] J. Li, X. P. Zhang, D. H. Yu, Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals, J. Comput. Appl. Math., 233 (2010), 2841–2854. http://dx.doi.org/10.1016/j.cam.2009.11.029 doi: 10.1016/j.cam.2009.11.029
    [15] J. Li, D. H. Yu, Error expansion of classical trapezoidal rule for computing Cauchy principal value integral, CMES-Comp. Model. Eng., 93 (2013), 47–67. http://dx.doi.org/10.3970/cmes.2013.093.047 doi: 10.3970/cmes.2013.093.047
    [16] J. Li, H. X. Rui, D. H. Yu, Trapezoidal rule for computing supersingular integral on a circle, J. Sci. Comput., 66 (2016), 740–760. http://dx.doi.org/10.1007/s10915-015-0042-3 doi: 10.1007/s10915-015-0042-3
    [17] J. Li, X. P. Zhang, D. H. Yu, Extrapolation methods to compute hypersingular integral in boundary element methods, Sci. China Math., 56 (2013), 1647–1660. http://dx.doi.org/10.1007/s11425-013-4593-1 doi: 10.1007/s11425-013-4593-1
    [18] J. Li, J. E. Yang, D. H. Yu, Error expansion of mid-rectangle rule for computation Cauchy Principal Value integral on interval, Int. J. Comput. Math., 91 (2014), 2294–2306. http://dx.doi.org/10.1080/00207160.2013.873123 doi: 10.1080/00207160.2013.873123
    [19] P. Linz, On the approximate computation of certain strongly singular integrals, Computing, 35 (1985), 345–353. http://dx.doi.org/10.1007/BF02240199 doi: 10.1007/BF02240199
    [20] T. Lv, Extrapolation for hypersingular integrals, Scientia Sinica Mathematica, 45 (2015), 1345–1360. http://dx.doi.org/10.1360/N012014-00210 doi: 10.1360/N012014-00210
    [21] P. Kim, U. J. Choi, Two trigonometric quadrature formulae for evaluating hypersingular integrals, Int. J. Numer. Meth. Eng., 56 (2003), 469–486. http://dx.doi.org/10.1002/nme.582 doi: 10.1002/nme.582
    [22] H. R. Kutt, The numerical evaluation of principal value integrals by finite-part integration, Numer. Math., 24 (1975), 205–210. http://dx.doi.org/10.1007/BF01436592 doi: 10.1007/BF01436592
    [23] J. M. Wu, Y. X. Wang, W. Li, W. W. Sun, Toeplitz-type approximations to the Hadamard integral operator and their applications to electromagnetic cavity problems, Appl. Numer. Math., 58 (2008), 101–121. http://dx.doi.org/10.1016/j.apnum.2006.11.003 doi: 10.1016/j.apnum.2006.11.003
    [24] J. M. Wu, W. W. Sun, The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals, Numer. Math., 102 (2005), 343–363. http://dx.doi.org/10.1007/s00211-005-0647-9 doi: 10.1007/s00211-005-0647-9
    [25] J. M. Wu, W. W. Sun, The superconvergence of Newton-Cotes rules for the Hadamard finite-part integral on an interval, Numer. Math., 109 (2008), 143–165. http://dx.doi.org/10.1007/s00211-007-0125-7 doi: 10.1007/s00211-007-0125-7
    [26] D. H. Yu, Natural boundary integrals method and its applications, Dordrecht: Springer, 2002
    [27] D. H. Yu, The approximate computation of hypersingular integrals on interval, Numerical Mathematics: A Journal of Chinese Universities (English Series), 1 (1992), 114–127.
    [28] X. P. Zhang, J. M. Wu, D. H. Yu, The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application, Int. J. Comput. Math., 87 (2010), 855–876. http://dx.doi.org/10.1080/00207160802226517 doi: 10.1080/00207160802226517
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(418) PDF downloads(49) Cited by(0)

Figures and Tables

Tables(17)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog