Research article

Set-valued mappings and best proximity points: A study in $ \mathcal{F} $-metric spaces

  • Received: 02 September 2024 Revised: 31 October 2024 Accepted: 12 November 2024 Published: 28 November 2024
  • MSC : 46S40, 47H10, 54H25

  • This paper introduces the concept of set-valued almost $ \Upsilon $-contractions in $ \mathcal{F} $-metric spaces, aiming to obtain the best proximity point results for set-valued mappings. The newly proposed idea of set-valued almost $ \Upsilon $-contractions includes various contractive conditions like set-valued almost contractions, set-valued $ \Upsilon $-contractions, and traditional $ \Upsilon $-contractions. Consequently, the results presented here extend and unify numerous established works in this domain. To illustrate the practical significance of the theoretical findings, a specific example is provided.

    Citation: Amer Hassan Albargi. Set-valued mappings and best proximity points: A study in $ \mathcal{F} $-metric spaces[J]. AIMS Mathematics, 2024, 9(12): 33800-33817. doi: 10.3934/math.20241612

    Related Papers:

  • This paper introduces the concept of set-valued almost $ \Upsilon $-contractions in $ \mathcal{F} $-metric spaces, aiming to obtain the best proximity point results for set-valued mappings. The newly proposed idea of set-valued almost $ \Upsilon $-contractions includes various contractive conditions like set-valued almost contractions, set-valued $ \Upsilon $-contractions, and traditional $ \Upsilon $-contractions. Consequently, the results presented here extend and unify numerous established works in this domain. To illustrate the practical significance of the theoretical findings, a specific example is provided.



    加载中


    [1] M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22 (1906), 1–72.
    [2] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11.
    [3] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [4] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fundam. Math., 3 (1922), 133–181.
    [5] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [6] Jr. S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–478.
    [7] M. Berinde, V. Berinde, On a general class of multivalued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782. https://doi.org/10.1016/j.jmaa.2006.03.016 doi: 10.1016/j.jmaa.2006.03.016
    [8] I. Altun, G. Minak, H. Dag, Multivalued $\mathcal{F}$ -contractions on complete metric spaces, J. Nonlinear Convex Anal., 16 (2015), 659–666.
    [9] I. Altun, G. Durmaz, G. Mınak, S. Romaguera, Multivalued almost $F$-contractions on complete metric spaces, Filomat, 30 (2016), 441–448. https://doi.org/10.2298/FIL1602441A doi: 10.2298/FIL1602441A
    [10] B. Ali, H. A. Butt, M. De la Sen, Existence of fixed points of generalized set-valued $F$-contractions of $b$-metric spaces, AIMS Math., 7 (2022), 17967–17988. https://doi.org/10.3934/math.2022990 doi: 10.3934/math.2022990
    [11] L. B. Ćirić, Generalized contractions and fixed point theorems, Publ. Inst. Math., 12 (1971), 19–26.
    [12] K. Fan, Extensions of two fixed point theorems of F. E. Brower, In: Fleischman, W.M. (eds) Set-Valued Mappings, Selections and Topological Properties of 2x, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0069713
    [13] S. S. Basha, Extensions of Banach's contraction principle, Numer. Func. Anal. Opt., 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713 doi: 10.1080/01630563.2010.485713
    [14] M. Omidvari, S. M. Vaezpour, R. Saadati, Best proximity point theorems for $F$-contractive non-self mappings, Miskolc Math. Notes, 15 (2014), 615–623. https://doi.org/10.18514/MMN.2014.1011 doi: 10.18514/MMN.2014.1011
    [15] H. Şahin, A new kind of $F$-contraction and some best proximity point results for such mappings with an application, Turk. J. Math., 46 (2022), 2151–2166. https://doi.org/10.55730/1300-0098.3260 doi: 10.55730/1300-0098.3260
    [16] A. Abkar, M. Gabeleh, The existence of best proximity points formultivalued non self mappings, RACSAM, 107 (2013), 319–325. https://doi.org/10.1007/s13398-012-0074-6 doi: 10.1007/s13398-012-0074-6
    [17] P. Debnath, Optimization through best proximity points for multivalued $\mathcal{F}$-contractions, Miskolc Math. Notes, 22 (2021), 143–151. https://doi.org/10.18514/MMN.2021.3355 doi: 10.18514/MMN.2021.3355
    [18] D. K. Patel, Bhupeshwar, Finding the best proximity point of generalized multivalued contractions with applications, Numer. Func. Anal. Opt., 44 (2023), 1602–1627. https://doi.org/10.1080/01630563.2023.2267294 doi: 10.1080/01630563.2023.2267294
    [19] M. De La Sen, M. Abbas, N. Saleem, On optimal fuzzy best proximity coincidence points of proximal contractions involving cyclic mappings in non-archimedean fuzzy metric spaces, Mathematics, 5 (2017), 22. https://doi.org/10.3390/math5020022 doi: 10.3390/math5020022
    [20] D. Lateef, Best proximity points in $\mathcal{F}$-metric spaces with applications, Demonstratio Math., 56 (2023), 1–14. https://doi.org/10.1515/dema-2022-0191 doi: 10.1515/dema-2022-0191
    [21] A. H. Albargi, J. Ahmad, Integral equations: New solutions via generalized best proximity methods, Axioms, 13 (2024), 467. https://doi.org/10.3390/axioms13070467 doi: 10.3390/axioms13070467
    [22] A. Asif, M. Nazam, M. Arshad, S. O. Kim, $\mathcal{F}$ -metric, $F$-contraction and common fixed-point theorems with applications, Mathematics, 7 (2019), 586. https://doi.org/10.3390/math7070586 doi: 10.3390/math7070586
    [23] A. Bera, H. Garai, B. Damjanović, A. Chanda, Some interesting results on $\mathcal{F}$-metric spaces, Filomat, 33 (2019), 3257–3268. https://doi.org/10.2298/FIL1910257B doi: 10.2298/FIL1910257B
    [24] D. Lateef, J. Ahmad, Dass and Gupta's fixed point theorem in $ \mathcal{F}$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 405–411. https://doi.org/10.22436/jnsa.012.06.06 doi: 10.22436/jnsa.012.06.06
    [25] A. Hussain, H. Al-Sulami, N. Hussain, H. Farooq, Newly fixed disc results using advanced contractions on $\mathcal{F}$-metric space, J. Appl. Anal. Comput., 10 (2020), 2313–2322. https://doi.org/10.11948/20190197
    [26] H. Işık, N. Hussain, A. R. Khan, Endpoint results for weakly contractive mappings in $\mathcal{F}$-metric spaces with application, Int. J. Nonlinear Anal. Appl., 11 (2020), 351–361. http://dx.doi.org/10.22075/ijnaa.2020.20368.2148 doi: 10.22075/ijnaa.2020.20368.2148
    [27] M. Gabeleh, H. P. A. Künzi, Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings, Demonstr. Math., 53 (2020), 38–43. https://doi.org/10.1515/dema-2020-0005 doi: 10.1515/dema-2020-0005
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(264) PDF downloads(62) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog