Processing math: 100%
Research article Special Issues

Infimum of the spectrum of Laplace-Beltrami operator on Cartan classical domains of type Ⅲ and Ⅳ

  • Let RA be the Cartan classical domains of type Ⅲ and Ⅳ, and Δg is assumed to be the Laplace-Beltrami operator associated to the Bergman metric g on RA. In this paper, we derive an estimate for λ1(Δg), which is the bottom of the spectrum of Δg on RA.

    Citation: Sujuan Long, Qiqi Zhang, Guijuan Lin, Conghui Shen. Infimum of the spectrum of Laplace-Beltrami operator on Cartan classical domains of type Ⅲ and Ⅳ[J]. AIMS Mathematics, 2023, 8(8): 19582-19594. doi: 10.3934/math.2023999

    Related Papers:

    [1] Ibrahim Aldayel . Value of first eigenvalue of some minimal hypersurfaces embedded in the unit sphere. AIMS Mathematics, 2023, 8(11): 26532-26542. doi: 10.3934/math.20231355
    [2] Ali Hassani . On the meromorphic continuation of the Mellin transform associated to the wave kernel on Riemannian symmetric spaces of the non-compact type. AIMS Mathematics, 2024, 9(6): 14731-14746. doi: 10.3934/math.2024716
    [3] Hassan Al-Zoubi, Bendehiba Senoussi, Mutaz Al-Sabbagh, Mehmet Ozdemir . The Chen type of Hasimoto surfaces in the Euclidean 3-space. AIMS Mathematics, 2023, 8(7): 16062-16072. doi: 10.3934/math.2023819
    [4] Yanlin Li, Erhan Güler, Magdalena Toda . Family of right conoid hypersurfaces with light-like axis in Minkowski four-space. AIMS Mathematics, 2024, 9(7): 18732-18745. doi: 10.3934/math.2024911
    [5] Rabha W. Ibrahim, Dumitru Baleanu . Fractional operators on the bounded symmetric domains of the Bergman spaces. AIMS Mathematics, 2024, 9(2): 3810-3835. doi: 10.3934/math.2024188
    [6] Kai Wang, Xiheng Wang, Xiaoping Wang . Curvature estimation for point cloud 2-manifolds based on the heat kernel. AIMS Mathematics, 2024, 9(11): 32491-32513. doi: 10.3934/math.20241557
    [7] Bo Lu, Angmao Daiqing . Cartan-Eilenberg Gorenstein-injective m-complexes. AIMS Mathematics, 2021, 6(5): 4306-4318. doi: 10.3934/math.2021255
    [8] Zihan Yue, Wei Jiang, Boying Wu, Biao Zhang . A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation. AIMS Mathematics, 2024, 9(3): 7040-7062. doi: 10.3934/math.2024343
    [9] Borhen Halouani, Fethi Bouzeffour . On the fractional Laplace-Bessel operator. AIMS Mathematics, 2024, 9(8): 21524-21537. doi: 10.3934/math.20241045
    [10] Erdal Bas, Ramazan Ozarslan . Theory of discrete fractional Sturm–Liouville equations and visual results. AIMS Mathematics, 2019, 4(3): 593-612. doi: 10.3934/math.2019.3.593
  • Let RA be the Cartan classical domains of type Ⅲ and Ⅳ, and Δg is assumed to be the Laplace-Beltrami operator associated to the Bergman metric g on RA. In this paper, we derive an estimate for λ1(Δg), which is the bottom of the spectrum of Δg on RA.



    Let (M,g) be a Kähler manifold of complex dimension n with Kähler metric g=ni,j=1ui¯jdzid¯zj. The Laplace-Beltrami operator with respect to the Kähler metric g is defined by

    Δg=4ni,j=1ui¯j2zi¯zj, (1.1)

    where [ui¯j]t=[ui¯j]1. Let

    λ1(Δg):=λ1(Δg,M)=inf{4Mui¯jhzih¯zjdVg:hC0(M),M|h|2dVg=1}. (1.2)

    Here dVg is the volume measure of M with respect to the Kähler metric g.

    Spectral theory or eigenvalue estimates for Laplace-Beltrami operators are important subject for mathematics. When M is compact and Δg is uniformly elliptic, λ1(Δg) is the first eigenvalue of Δg. Researches on its upper and lower bound estimates have a long history with many results (see [1,2,3,4,5] and the reference therein).

    Unlike compact manifolds, for the case when M is a non-compact manifold, λ1(Δg) may not be an eigenvalue of Δg, but rather the infimum of the positive spectral of Δg. This naturally leads to an interesting problem: study of estimate for λ1(Δg) in the complete non-compact case. Quite a bit of research has been done on this problem. For examples, the results on upper bounds and lower bounds estimates obtained by Cheng [6], Li and Wang [7,8,9,10], Munteanu [11], Li and Tran [12] are all well known. The rigidity property of manifold may be further obtained when λ1 achieves its sharp upper or lower bound estimate. For examples, one may see [7,8,9,13,14] and references therein.

    We recall the following estimates for λ1(Δg), in the Riemannian manifolds, a sharp upper bound estimate for λ1(Δg) is well known from Cheng [6]. For the Kähler manifolds, Li and Wang gave an important sharp upper bound estimate in [9]. They proved λ1(Δg)n2 with the assumption that the holomorphic bisectional curvature of M is bounded below by 1. Later on, Munteanu [11] improved Li and Wang's result, and derived another sharp estimate in terms of the Ricci curvature is bounded from below by 2(n+1).

    As a continuation of the work of Li and Wang [9] and the work of Munteanu [11], Li and Tran [12] provided many examples of bounded strongly pseudoconvex domains, on which λ1(Δg) can be explicitly formulated. However, those domains were exclusive of most of non-smooth domains, like Cartan classical domains. It would be desirable to proceed the study of λ1(Δg) on the Cartan classical domains.

    Suppose RA(n) be the Cartan classical domains of type A(A=III,IV). Let D be a bounded pseudoconvex domain in Cn and u(z)C(D) be a strictly plurisubharmonic exhaustion function for D. Let g=ni,j=12uzi¯zjdzid¯zj be the Kähler metric induced by u. We set

    |u|2g=ni,j=1gi¯juziu¯zj (1.3)

    and

    αg=sup{α:D(det[gi¯j])αdv<}. (1.4)

    This paper aims to provide an estimate for λ1(Δg) on RA(n)(A=III,IV) with g is the Bergman metric of RA(n). Regarding the estimate for λ1(Δg) on the Cartan classical domains of type Ⅰ and Ⅱ, it has been studied by the first author in [15]. We continue to use some ideas in [15], but the calculations in the current cases are much more delicate. This is due to the special forms of RIII(n) and RIV(n).

    Our study is motivated by Li and Tran [12]. We emphasize that the calculation of |u|2g and the construction of test functions play important roles in our argument, but both are difficult to solve. We use the Bergman metric g on the Cartan classical domains given by Hua [16] and Lu [17].

    Let KA(z):=KA(z,z) be the Bergman kernel function of RA(n) and let

    uA=1cAlogKA(z),cIII=n1andcIV=2n. (1.5)

    Our goal is to prove the following results.

    Theorem 1.1. Let ΔA=Δg(A=III,IV) be the Laplace-Beltrami operator associated to the Bergman metric g on the Cartan classical domains RA(n) of type A. Let u=uA be the strictly plurisubharmonic exhaustion function for RA(n) and g=gA be the Kähler metric induced by uA. Assuming that |u|2gβ, one has

    (i) λ1(ΔA)N2A/β with NIII=n(n1)/2 and NIV=n;

    (ii) λ1(ΔA)βc2A(1αA)2, where

    αIII:=12(n1),αIV(n)=12 whenn=1,αIV(n)=1nwhenn>1;

    and

    cIII=n1,cIV=2n.

    Corollary 1.1. Let the notations and assumptions as in Theorem 1.1. Then

    λ1(ΔIII){[n(n1)24,n(2n3)24],n=2k;[n2(n1)4,(n1)(2n3)24],n=2k1.

    and

    λ1(ΔIV){=1,n=1;[n2,4(n1)2],n2. (1.6)

    The remainder of the paper is organized as follows. In Section 2, we introduce the notion and provide some preliminary results concerning RA(n). In Section 3, our main results are stated and proved. Section 4 contains a brief summary of our study.

    Let M(n) be the set of all n×n matrices with entries in C. For any A=[aij]M(n), let

    A=¯A=[¯aji].

    We denote by In the n×n identity matrix. The Cartan classical domains of the type Ⅲ and Ⅳ can be represented as follows:

    RIII:=RIII(n)={ZM(n): Z=Z,InZZ>0}. (2.1)
    RIV:=RIV(n)={z=(z1,,zn)Cn,1+|nj=1z2j|22|z|2>0,|nj=1z2j|<1}. (2.2)

    Suppose A and B are two n×n matrix. Then we define an n(n1)2×n(n1)2 matrix [A˙×B]as, which consists of the entries (A˙×B)(ij)(k) with i<j and k< as follows:

    (A˙×B)(ij)(k)=aikbjaibjk,1i<jn,1k<n. (2.3)

    In particular,

    (A˙×A)(ij)(k)=a(ij)(k)=aikajaiajk,1i<jn,1k<n. (2.4)

    The following result can be found in [17, p317–318].

    Proposition 2.1. [17] Let A and B be two n×n matrices. Then

    [A˙×A]as[B˙×B]as=[AB˙×AB]as,([A˙×B]as)=[A˙×B]as (2.5)

    and

    [A˙×A]1as=[A1˙×A1]as,det[A˙×A]as=(detA)n1. (2.6)

    A straightforward calculation shows:

    Proposition 2.2. Let C=[cpq] be a s×s matrix where cpq is a function of z=(z1,,zn)Cn and ¯z. Then

    logdetCzk=sp,q=1cpqcpqzk (2.7)

    and

    2logdetCzk¯z=sp,q=1cpq2cpqzk¯zsij,pq=1ciqcpjcpqzkcij¯z, (2.8)

    where

    sj=1cijckj=δik.

    For ZRIII, we set

    z=(z12,,z1m,z23,,z2n,,z(n1)n)Cn(n1)2.

    Obviously 2z2=tr(ZZ). We know from Hua's book [16] or Lu's book [17, Section 3.3] that

    KIII(Z)=1V(RIII)1det(IZZ)n1, (2.9)

    and

    KIV(z)=1V(RIV)1(1+|nj=1z2j|22|z|2)n. (2.10)

    Here V(RA) is the volume of RA.

    Consider the Bergman kernel function of RA, we construct uA as (1.5), hence uA is strictly plurisubharmonic exhaustion function in RA. Furthermore, we define a complete Kähler metric gA which is induced by uA as follows:

    gA=Ni,j=1uAi¯jdzid¯zj, (2.11)

    where N=n(n1)/2 when A=III and N=n when A=IV. Consequently,

    |uA|2gA=Ni,j=1uAi¯juAziuA¯zj, (2.12)

    where [uAi¯j]t=[uAi¯j]1.

    Let us mention two important consequences about the complex Hessian matrix for uA on RA.

    Proposition 2.3. The complex Hessian matrix for uA can be stated by

    H(uIII)(Z)=2[(I¯Z¯Z)1˙×(I¯Z¯Z)1]as, (2.13)
    H(uIII)1(Z)=12[(I¯Z¯Z)˙×(I¯Z¯Z)]as, (2.14)
    H(uIV)(z)=1r2(z)[r(z)In2(zˉz)(12|z|2¯zzzz1)¯(zˉz)] (2.15)

    and

    H(uIV)1(z)=[r(z)(I2¯zz)+2(zzz¯z)(¯z¯z¯zz)], (2.16)

    where r(z)=1+|nj=1z2j|22|z|2.

    Proof. (i) For ZRIII, by applying (2.7) and (2.8), a straightforward calculation shows that

    2logKIII(Z)zjα¯zkβ|Z=0=(n1)2logdet(InZZ)zjα¯zkβ|Z=0=(n1)nh,=1((In+ZZ)1)h2(ns=1zhs¯zs)zjα¯zkβ|Z=0=(n1)nh=1¯zkβs(δjhδsα¯zshδhαδjs¯zsh)=(n1)nh=1¯zkβ(δjh¯zαhδhα¯zjh)=(n1)nh=1[δjh(δkαδhβδhkδαβ)δhα(δjkδhβδjβδhk)]=2(n1)(δkαδjβδjkδαβ). (2.17)

    Hence, we have

    H(uIII)(0)=[2uzjα¯zkβ]|Z=0=2[Im˙×Im]as. (2.18)

    As the proof of equality (3.3.45) in [17], the transformation property of Bergman kernel function and Möbius transform of RA, (2.13) follows. By Proposition 2.1, (2.14) obtained.

    (ii) For z=(z1,z2,zn)RIV, by equality (3.3.57) in [17], we have

    2logKIV(z)zi¯zj=1r2(z)[r(z)In+4zzz¯z2(¯zzzz+zzz¯z)2(z¯zzz)]=1r2(z){r(z)In2[(z2|z|2z+zzz)¯z+2(z¯zzz)z]}=1r2(z)[r(z)In2(z2|z|2z+zzzz¯zzz)¯(zˉz)]=1r2(z)[r(z)In2(zz)(12|z|2¯zzzz1)¯(zˉz)] (2.19)

    This implies (2.15). We claim (2.16) holds from discussion of equality (6.1.29) in [17].

    Proposition 2.4. With the notations above, one has

    detH(uIII)(Z)=2n(n1)21det(IZZ)(n1) (2.20)

    and

    detH(uIV)(z)=1rn(z). (2.21)

    Proof. By Proposition 2.1 and Proposition 2.3, it is easy to deduce that

    detH(uIII)(z)=2n(n1)2det[(I¯Z¯Z)1˙×(I¯Z¯Z)1]as=2n(n1)2det(I¯Z¯Z)(n1)=2n(n1)2det(IZZ)(n1)

    and

    detH(uIV)(z)=det{1r2(z)[r(z)In2(zˉz)(12|z|2¯zzzz1)¯(zˉz)]}=1rn(z)det[(1001)2r(z)(12|z|2¯zzzz1)(ˉzz)(zˉz)]=1rn(z)det[(1001)2r(z)(12|z|2¯zzzz1)(|z|2¯zzzz|z|2)]=1rn(z)det(12r(z)(|z|22|z|4+|zz|2)2r(z)¯zz(1|z|2)2r(z)zz(|z|21)12r(z)(|zz|2|z|2))=1rn+2(z)(1+2|zz|24|z|2+4|z|4+|zz|44|z|2|zz|2)=1rn(z).

    This completes the proof.

    In this section, in order to prove the main theorems, we begin to establish an estimate for |u|2g. Let

    z=(z1,,zn).

    Since

    (uz)u¯z=(uz1u¯z1uz1u¯znuznu¯z1uznu¯zn), (3.1)

    one has

    |u|2g=ni,j=1ui¯juziu¯zj=tr([ui¯j](uz)u¯z). (3.2)

    Proposition 3.1. With the notations in (1.5), (2.11) and (2.12), one has the following estimates:

    |uIII|2gIII2[n2]and|uIV|2gIV1. (3.3)

    Proof. (i) For zRIII, according to (3.2), one has

    tr([A˙×A]asuIIIzuIII¯z)=ni,k=1i<j,k<a(ij)(k)uIIIzijuIII¯zk=ni,k=1i<j,k<(aikajaiajk)uIIIzijuIII¯zk=12ni,k=1k<[(i<jaikajuIIIzij+i>jajaikuIIIzij)(i>jajkaiuzij+i<jaiajkuIIIzij)]uIII¯zk=12ni,j=1nk=1k<(aikajaiajk)qijuIIIzijuIII¯zk=12ni,j=1nk=1(k<aikajuIII¯zkk>aikajuIII¯zk)qijuIIIzij=12ni,k=1nk,=1aikajqijqkuIIIzijuIII¯zk, (3.4)

    where

    qij={0,i=j;1,ij.

    Let D[λ1,,λn] be n×n diagonal matrix with all diagonal entries are λ1,,λn. For ZRIII, since ZZ is the Hermitian matrix, there exists n×n unitary matrix U such that

    UZZU={D[λ1,,λn],n=2k;D[λ1,,λn1,0],n=2k+1. (3.5)

    and λj[0,1),λ1λ2λn0. There is no loss of generality in assuming

    ZZ={D[λ1,,λn],n=2k;D[λ1,,λn1,0],n=2k+1. (3.6)

    It follows that

    (ImZZ)1={D[k=0λk1,,k=0λkn],n=2k;D[k=0λk1,,k=0λkn,0],n=2k+1. (3.7)

    Thus

    uIIIzik=¯zik(11λi+11λk),i<k; (3.8)
    uIII¯zj=zj(11λj+11λ).j<. (3.9)

    Therefore

    |uIII|2gIII=ni,j=1k>i,>jui¯j,k¯IIIuIIIzikuIII¯zj=12ni,j,k,=1(δijns=1zis¯zjs)(δknt=1zkt¯zt)12qikqjuIIIzikuIII¯zj=14ni=1nk=1(1λi)(1λk)(11λi+11λk)2|qikzik|2=12ni,k=1(1λk1λi+1)|qikzik|2=12(tr(Z(IZZ)Z(IZZ)1)+tr(ZZ))=12(tr(ZZ(IZZ)(IZZ)1)+tr(ZZ))=12(tr(ZZ)+tr(ZZ))=tr(ZZ)2[n2]. (3.10)

    (ii) For zRIV, we have

    uIVzi=12log(r(z))zi=121r(z)r(z)zi=(¯z¯zzi¯zi)r(z), (3.11)
    uIV¯zj=12log(r(z))¯zj=121r(z)r(z)¯zj=(zz¯zjzj)r(z). (3.12)

    Accordingly,

    uIVziuIV¯zj=1r2(z)(|zz|2zi¯zj¯z¯zzizjzz¯zi¯zj+¯zizj). (3.13)

    Notice that

    A(z):=ni,j=1(δij2ziˉzj)(|zz|2zi¯zj¯z¯zzizjzz¯zi¯zj+¯zizj)=(|zz|2|z|22|zz|2+|z|2)2(|zz|42|zz|2|z|2+|z|4)=5|zz|2|z|22|zz|22|zz|42|z|4+|z|2 (3.14)

    and

    B(z):=ni,j=1(ˉzi¯zzzi)(zjzzˉzj)(¯z¯zzi¯zi)(zz¯zjzj)=ni=1(ˉzi¯zzzi)(¯z¯zzi¯zi)nj=1(zjzzˉzj)(zz¯zjzj)=(2¯z¯z|z|2¯z¯z¯z¯z|zz|2)(2zz|z|2zzzz|zz|2)=|zz|2(2|z|21|zz|2)2=r2(z)|zz|2. (3.15)

    Then (3.14) and (3.15) yield

    r(z)A(z)+2B(z)=r(z)(5|zz|2|z|22|zz|22|zz|42|z|4+|z|2)+2r2(z)|zz|2=r2(z)|z|2. (3.16)

    Consequently,

    |uIV|2gIV=ni,j=1ui¯jIVuIVziuIV¯zj=ni,j=1[r(z)(δij2ziˉzj)+2(ˉzi¯zzzi)(zjzzˉzj)]uIVziuIV¯zj=1r2(z)ni,j=1[r(z)(δij2ziˉzj)+2(ˉzi¯zzzi)(zjzzˉzj)](¯z¯zziˉzi)(zzˉzjzj)=1r2(z)[r(z)A(z)+2B(z)]=|z|21, (3.17)

    which implies the desired conclusion. The proof of the proposition is complete.

    To prove Theorem 1.1 and for the convenience of the reader, we recall the following proposition from [16].

    Proposition 3.2. With the notations above, one has,

    RIIIdet(IZZ)λdZ<+λ>12, (3.18)

    and

    RIV(μ(z))α(ν(z))βdz<+α>1,α+β>n. (3.19)

    Where μ(z)=(1zˉz(zˉz)2|zz|2), ν(z)=(1zˉz+(zˉz)2|zz|2).

    Now we are ready to prove Theorem 1.1.

    Proof of Theorem 1.1. By Proposition 2.1 in [12], it is evident that statement (i) holds. So we only need to prove statement (ii). Let

    fA(Z)=eτuA(z). (3.20)

    By Proposition 2.4, one has

    RA|fA(Z)|2dVu(Z)=RAKA(Z,Z)2τcAdVuA(Z)=CARAKA(Z,Z)(12τcA)dV(z), (3.21)

    where CA and cA are constants which are dependent on RA.

    By Faraut and Koranyi [18] and Proposition 3.2, there exists αA>0 such that

    RAKA(Z,Z)αdv{=+α>αA,<+α<αA. (3.22)

    Now we choose τ such that

    12τcA<αAτ>12cA(1αA). (3.23)

    Applying the argument of the proof of [12, Theorem 2.2] and Proposition 3.1, one has

    λ1(ΔA)4RAuik,jAfAzikfA¯zjdVuARA|fA|2dVuA=4τ2RA|fA|2uik,jAuAzikuA¯zjdVuARA|fA|2dVuA=4τ2RA|fA|2|uA|2gAdVuARA|fA|2dVuA4τ2β. (3.24)

    Letting τ12cA(1αA) we have

    λ1(ΔA)4β[12cA(1αA)]2=βc2A(1αA)2. (3.25)

    Which completes the proof.

    Remark 3.1. Let

    KIII(Z,Z)=CIII(det(IZZ))(n1) (3.26)

    and

    KIV(Z,Z)=CIVμ(z)nν(z)n. (3.27)

    We conclude from Proposition 3.2 that

    αIII=12(n1), (3.28)

    and

    αIV={12n=1,1nn2. (3.29)

    Finally, we prove Corollary 1.1 here.

    Proof of Corollary 1.1. (i) For ZRIII with β=2[n2], by Theorem 1.1, and Proposition 3.1, (3.28) and (3.29) now lead to

    λ1(ΔIII)(n(n1)2)21β=n2(n1)281[n2]

    and

    λ1(ΔIII)βc2A(1αA)2=2[n2](n1)2(112(n1))2=2[n2](2n3)24.

    Therefore,

    λ1(ΔIII)[n(n1)24,n(2n3)24],n=2k

    and

    λ1(ΔIII)[n2(n1)4,(n1)(2n3)24],n=2k1.

    (ii) For zRIV, when n=1, it is evident that

    λ1(ΔIV)=1.

    When n2,

    λ1(ΔIV)n2andλ1(ΔIV)(2n)2(11n)2=4(n1)2.

    The proof of Part (ii) follows.

    In this paper, we investigate estimate for λ1(Δg) on the Cartan classical domains of the last two types RA(A=III,IV). Based on theories of harmonic analysis in the Cartan classical domains from Hua [16] and Lu [17]. Firstly, We are dedicated to find the plurisubharmonic exhaustion function uA under Bergman kernel function of RA. Next, we define a complete Kähler metric gA which induced by uA. Through constructing suitable test function fA(Z)=eτuA(z), we obtain upper and lower bound estimates for λ1(Δg) on RA under the assumption that |u|2g<β. In addition, we provide the value of β by establishing an estimate for |u|2g. This brings us to give an explicit range for λ1(Δg). Attributed to the special forms of RIII and RIV, the approach examined in this present study requires complicated but interesting technical work.

    As shown in our study, we actually propose an approach which may be adapted to solve the problem of finding estimates for λ1(Δg) on other important domains. It is well known that any bounded symmetric domain may be represented as the topological product of irreducible bounded symmetric domains: the class of irreducible bounded symmetric domains consists of four types of Cartan classical domains and two exceptional ones. So we are encouraged to work on the estimates for λ1(Δg) on bounded symmetric domains. This will be the objective of our future study.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was funded by National Natural Science Foundation of China (Grant Nos. 12001259; 12101288), Natural Science Foundation of Fujian Province (Grant No. 2020J01131142), Natural Science Foundation of Guangxi Province (Grant No. 2016GXNSFDA380031), and the Research Foundation of Minjiang University for the Introduction of Talents (Grant No. MJY17006). The authors wish to thank the referees for their helpful comments and suggestions.

    All authors declare no conflicts of interest in this paper.



    [1] P. Li, A lower bound for the first eigenvalue of the Laplacian on a compact manifold, Indiana Univ. Math. J., 28 (1979), 1013–1019. http://dx.doi.org/10.1512/iumj.1979.28.28075 doi: 10.1512/iumj.1979.28.28075
    [2] P. Li, Lecture notes on geometric analysis, Seoul: Seoul National University, 1993.
    [3] P. Li, S. T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, Proc. Symp. Pure Math., 36 (1980), 205–239.
    [4] P. Li, S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Commun. Math. Phys., 88 (1983), 309–318. http://doi.org/10.1007/BF01213210 doi: 10.1007/BF01213210
    [5] S. Udagawa, Compact Kähler manifolds and the eigenvalues of the Laplacian, Colloq. Math., 56 (1988), 341–349. http://doi.org/10.4064/cm-56-2-341-349 doi: 10.4064/cm-56-2-341-349
    [6] S. Y. Cheng, Eigenvalue comparison theorems and its geometric application, Math. Z., 143 (1975), 289–297. http://doi.org/10.1007/BF01214381 doi: 10.1007/BF01214381
    [7] P. Li, J. P. Wang, Complete manifolds with positive spectrum, J. Differential Geom., 58 (2001), 501–534. http://doi.org/10.4310/jdg/1090348357 doi: 10.4310/jdg/1090348357
    [8] P. Li, J. P. Wang, Complete manifolds with positive spectrum Ⅱ, J. Differential Geom., 62 (2002), 143–162. http://doi.org/10.4310/jdg/1090425532 doi: 10.4310/jdg/1090425532
    [9] P. Li, J. P. Wang, Comparison theorem for Kähler manifolds and positivity of spectrum, J. Differential Geom., 69 (2005), 43–74. http://doi.org/10.4310/jdg/1121540339 doi: 10.4310/jdg/1121540339
    [10] S. Y. Li, X. D. Wang, Bottom of spectrum of Kähler manifolds with a strongly pseudoconvex boundary, Int. Math. Res. Notices, 2012 (2012), 4351-4371. http://dx.doi.org/10.1093/imrn/rnr185 doi: 10.1093/imrn/rnr185
    [11] O. Munteanu, A sharp estimate for the bottom of the spectrum of the Laplacian on Kähler manifolds, J. Differential Geom., 83 (2009), 163–187. http://doi.org/10.4310/jdg/1253804354 doi: 10.4310/jdg/1253804354
    [12] S. Y. Li, M. A. Tran, Infimum of the spectrum of Laplace-Beltrami operator on a bounded pseudoconvex domain with a Kähler metric metric of Bergman type, Comm. Anal. Geom., 18 (2010), 375–395. http://dx.doi.org/10.4310/CAG.2010.v18.n2.a5 doi: 10.4310/CAG.2010.v18.n2.a5
    [13] L. Z. Ji, P. Li, J. P. Wang, Ends of locally symmetric spaces with maximal bottom spectrum, J. Reine Angew. Math., 632 (2009), 1–35. http://doi.org/10.1515/CRELLE.2009.048 doi: 10.1515/CRELLE.2009.048
    [14] S. L. Kong, P. Li, D. T. Zhou, Spectrum of the Laplacian on quaternionic Kähler manifolds, J. Differential Geom., 78 (2008), 295–332. http://doi.org/10.4310/jdg/1203000269 doi: 10.4310/jdg/1203000269
    [15] S. Long, K. Li, Infimum of the spectrum of Laplace-Beltrami operator on classical bounded symmetric domains with Bergman metric, J. Math. Res. Appl., 39 (2019), 43–50.
    [16] L. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Soc., 1963.
    [17] Q. Lu, The classical manifolds and classical domains, Beijing: Science Press, 2011.
    [18] J. Faraut, A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 88 (1990), 64–89. http://doi.org/10.1016/0022-1236(90)90119-6 doi: 10.1016/0022-1236(90)90119-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1561) PDF downloads(51) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog