We study the notion of Cartan-Eilenberg Gorenstein-injective $ m $-complexes. We show that a $ m $-complex $ G $ is Cartan-Eilenberg Gorenstein-injective if and only if $ G_n $, $ \mathrm{Z}_n^{t}(G) $, $ \mathrm{B}_n^{t}(G) $ and $ \mathrm{H}_n^{t}(G) $ are Gorenstein-injective modules for each $ n\in\mathbb{Z} $ and $ t = 1, 2, \ldots, m $. As an application, we show that an iteration of the procedure used to define the Cartan-Eilenberg Gorenstein-injective $ m $-complexes yields exactly the Cartan-Eilenberg Gorenstein-injective $ m $-complexes. Specifically, given a Cartan-Eilenberg exact sequence of Cartan-Eilenberg Gorenstein-injective $ m $-complexes
$ \mathbb{G} = \cdots\rightarrow G^{-1}\rightarrow G^0\rightarrow G^1\rightarrow \cdots $
such that the functor $ \mathrm{Hom}_{\mathcal{C}_m({R})}(H, -) $ leave $ \mathbb{G} $ exact for each Cartan-Eilenberg Gorenstein-injective $ m $-complex $ H $, then $ \mathrm{Ker}(G^0\rightarrow G^1) $ is a Cartan-Eilenberg Gorenstein-injective $ m $-complex.
Citation: Bo Lu, Angmao Daiqing. Cartan-Eilenberg Gorenstein-injective $ m $-complexes[J]. AIMS Mathematics, 2021, 6(5): 4306-4318. doi: 10.3934/math.2021255
We study the notion of Cartan-Eilenberg Gorenstein-injective $ m $-complexes. We show that a $ m $-complex $ G $ is Cartan-Eilenberg Gorenstein-injective if and only if $ G_n $, $ \mathrm{Z}_n^{t}(G) $, $ \mathrm{B}_n^{t}(G) $ and $ \mathrm{H}_n^{t}(G) $ are Gorenstein-injective modules for each $ n\in\mathbb{Z} $ and $ t = 1, 2, \ldots, m $. As an application, we show that an iteration of the procedure used to define the Cartan-Eilenberg Gorenstein-injective $ m $-complexes yields exactly the Cartan-Eilenberg Gorenstein-injective $ m $-complexes. Specifically, given a Cartan-Eilenberg exact sequence of Cartan-Eilenberg Gorenstein-injective $ m $-complexes
$ \mathbb{G} = \cdots\rightarrow G^{-1}\rightarrow G^0\rightarrow G^1\rightarrow \cdots $
such that the functor $ \mathrm{Hom}_{\mathcal{C}_m({R})}(H, -) $ leave $ \mathbb{G} $ exact for each Cartan-Eilenberg Gorenstein-injective $ m $-complex $ H $, then $ \mathrm{Ker}(G^0\rightarrow G^1) $ is a Cartan-Eilenberg Gorenstein-injective $ m $-complex.
[1] | P. Bahiraei, R. Hafezi, A. Nematbakhsh, Homotopy category of $N$-complexes of projective modules, J. Pure Appl. Algebra, 220 (2016), 2414–2433. doi: 10.1016/j.jpaa.2015.11.012 |
[2] | A. Beligiannis, Relative homological algebra and purity in triangulated categories, J. Algebra, 227 (2000), 268–361 doi: 10.1006/jabr.1999.8237 |
[3] | D. Bennis, N. Mahdou, Strongly Gorenstein projective, injective and flat modules, J. Pure Appl. Algebra, 210 (2007), 437–445. doi: 10.1016/j.jpaa.2006.10.010 |
[4] | E. E. Enochs, Cartan-Eilenberg complexes and resolutions, J. Algebra, 342 (2011), 16–39. doi: 10.1016/j.jalgebra.2011.05.011 |
[5] | E. E. Enochs, J. R. García Rozas, Gorenstein injective and projective complexes, Commun. Algebra, 26 (1998), 1657–1674. doi: 10.1080/00927879808826229 |
[6] | E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, Berlin, New York: De Gruyter, 2000. |
[7] | S. Estrada, Monomial algebras over infinite quivers. Applications to $N$-complexes of modules, Commun. Algebra, 35 (2007), 3214–3225. doi: 10.1080/00914030701410211 |
[8] | J. R. García Rozas, Covers and envelopes in the category of complexes, Chapman & Hall/CRC, 1999. |
[9] | J. Gillespie, The homotopy category of $N$-complexes is a homotopy category, J. Homotopy Relat. Str., 10 (2015), 93–106. doi: 10.1007/s40062-013-0043-6 |
[10] | H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193. doi: 10.1016/j.jpaa.2003.11.007 |
[11] | O. Iyama, K. Kato, J. I. Miyachi, Derived categories of $N$-complexes, J. Lond. Math. Soc., 96 (2017), 687–716. doi: 10.1112/jlms.12084 |
[12] | Z. K. Liu, C. X. Zhang, Gorenstein injective complexes of modules over Noetherian rings, J. Algebra, 342 (2009), 1546–1554. |
[13] | B. Lu, Gorenstein objects in the category of $N$-complexes, J. Algebra Appl., https://doi.org/10.1142/S0219498821501747. |
[14] | B. Lu, Z. X. Di, Gorenstein cohomology of $N$-complexes, J. Algebra Appl., 19 (2020), 2050174. doi: 10.1142/S0219498820501741 |
[15] | B. Lu, J. Q. Wei, Z. X. Di, $\mathscr{W}$-Gorenstein $N$-complexes, Rocky MT. J. Math., 49 (2019), 1973–1992. doi: 10.1216/RMJ-2019-49-6-1973 |
[16] | B. Lu, Z. X. Di, Y. F. Liu, Cartan-Eilenberg $N$-complexes with respect to self-orthogonal subcategories, Front. Math. China, 15 (2020), 351–365. doi: 10.1007/s11464-020-0828-y |
[17] | B. Lu, W. Ren, Z. K. Liu, A note on Cartan-Eilenberg Gorenstein categories, Kodai Math. J., 38 (2015), 209–227. doi: 10.2996/kmj/1426684451 |
[18] | S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc., 77 (2008), 481–502. doi: 10.1112/jlms/jdm124 |
[19] | Z. Y. Xie, X. Y. Yang, The homotopy categories of $N$-complexes of injectives and projectives, J. Korean Math. Soc., 56 (2019), 623–644. |
[20] | D. W. Xin, J. L. Chen, X. X. Zhang, Completely $\mathscr{W}$-resolved complexes, Commun. Algebra, 41 (2013), 1094–1106. doi: 10.1080/00927872.2011.630707 |
[21] | A. M. Xu, N. Q. Ding, On stability of Gorenstein categories, Commun. Algebra, 41 (2013), 3793–3804. doi: 10.1080/00927872.2012.677892 |
[22] | G. Yang, Gorenstein projective, injective and flat complexes, Acta Math. Sin. (Chinese Series), 54 (2011), 451–460. |
[23] | G. Yang, L. Liang, Cartan-Eilenberg Gorenstein projective complexes, J. Algebra Appl., 13 (2014), 1350068. doi: 10.1142/S0219498813500680 |
[24] | G. Yang, L. Liang, Cartan-Eilenberg Gorenstein flat complexes, Math. Scand., 114 (2014), 5–25. doi: 10.7146/math.scand.a-16637 |
[25] | X. Y. Yang, T. Y. Cao, Cotorsion pairs in $\mathcal{C}_N(\mathcal{A})$, Algebra Colloq., 24 (2017), 577–602. doi: 10.1142/S1005386717000384 |
[26] | X. Y. Yang, N. Q. Ding, The homotopy category and derived category of $N$-complexes, J. Algebra, 426 (2015), 430–476. doi: 10.1016/j.jalgebra.2014.10.053 |
[27] | X. Y. Yang, Z. K. Liu, Gorenstein projective, injective, and flat complexes, Commun. Algebra, 39 (2011), 1705–1721. |
[28] | X. Y. Yang, J. P. Wang, The existence of homotopy resolutions of $N$-complexes, Homol. Homotopy Appl., 17 (2015), 291–316. doi: 10.4310/HHA.2015.v17.n2.a14 |