By means of$ (p, q)- $ Lucas polynomials, a class of Bazilevič functions of order $ \vartheta +i\delta $ in the open unit disk $ \mathbb{U} $ of analytic and bi-univalent functions is introduced. Further, we estimate coefficients bounds and Fekete-Szegö inequalities for functions belonging to this class. Several corollaries and consequences of the main results are also obtained.
Citation: Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary. Bi-Bazilevič functions of order $ \vartheta +i\delta $ associated with $ (p, q)- $ Lucas polynomials[J]. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254
By means of$ (p, q)- $ Lucas polynomials, a class of Bazilevič functions of order $ \vartheta +i\delta $ in the open unit disk $ \mathbb{U} $ of analytic and bi-univalent functions is introduced. Further, we estimate coefficients bounds and Fekete-Szegö inequalities for functions belonging to this class. Several corollaries and consequences of the main results are also obtained.
[1] | I. Aldawish, T. Al-Hawary, B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics, 8 (2020), 783. doi: 10.3390/math8050783 |
[2] | Ş. Altınkaya, S. Yalçın, On the Chebyshev polynomial coefficient problem of bi-Bazilevic function, TWMS J. App. Eng. Math., 10 (2020), 251–258. |
[3] | Ş. Altınkaya, S. Yalçın, On the $(p, q)-$Lucas polynomial coefficient bounds of the bi-univalent function class $\sigma $, Boletín de la Sociedad Matemática Mexicana, 25 (2019), 567–575. doi: 10.1007/s40590-018-0212-z |
[4] | Ş. Altınkaya, S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, 2015 (2015), 1–5. |
[5] | A. Amourah, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to $(p, q)-$Lucas polynomials, TWMS Journal of Applied and Engineering (in press). |
[6] | A. Amourah, , Faber polynomial coefficient estimates for a class of analytic bi-univalent functions, AIP Conference Proceedings, 2096 (2019), 020024. AIP Publishing LLC. |
[7] | A. Amourah, Initial bounds for analytic and bi-univalent functions by means of $(p, q)-$ Chebyshev polynomials defined by differential operator, General Letters in Mathematics, 7 (2019), 45–51. |
[8] | A. Amourah, M. Illafe, A Comprehensive subclass of analytic and Bi-univalent functions associated with subordination, Palestine Journal of Mathematics, 9 (2020), 187–193. |
[9] | D. Brannan, J. Clunie, Aspects of contemporary complex analysis, Academic Press, New York, 1980. |
[10] | D. Brannan, T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and Its Applications, (1988), 53–60. |
[11] | P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983. |
[12] | M. Fekete, G. Szegö, Eine Bemerkung ber Ungerade Schlichte Funktionen, J. London Math. Soc., 1 (1933), 85–89. |
[13] | B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. doi: 10.1016/j.aml.2011.03.048 |
[14] | B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43 (2014), 383–389. |
[15] | B. A. Frasin, T. Al-Hawary, Initial Maclaurin coefficients bounds for new subclasses of bi-univalent functions, Theory Appl. Math. Comp. Sci., 5 (2015), 186–193. |
[16] | G. Y. Lee, M. Aşçı, Some properties of the $(p, q)-$ Fibonacci and $(p, q)-$ Lucas polynomials, J. Appl. Math., 2012 (2012), 1–18. |
[17] | M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. doi: 10.1090/S0002-9939-1967-0206255-1 |
[18] | G. Murugusundaramoorthy, S. Yalçın, On the $\lambda -$ Psedo-bi-starlike functions related to $(p, q)-$Lucas polynomial, Libertas Mathematica (newseries), 39 (2019), 79–88. |
[19] | H. M. Srivastava, G. Murugusundaramoorthy, K. Vijaya, Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal., 2 (2013), 167–181. |
[20] | H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. doi: 10.1016/j.aml.2010.05.009 |
[21] |
H. M. Srivastava, S. Bulut, C M. |
[22] | T. Sheil-Small, On Bazilevič functions, The Quarterly Journal of Mathematics, 23 (1972), 135–142. doi: 10.1093/qmath/23.2.135 |
[23] | P. Vellucci, A. M. Bersani, The class of Lucas–Lehmer polynomials, Rend. Mat. Appl. serie VII, 37 (2016), 43–62. |
[24] | P. Vellucci, A. M. Bersani, Orthogonal polynomials and Riesz bases applied to the solution of Love's equation, Math. Mech. Complex Syst., 4 (2016), 55–66. doi: 10.2140/memocs.2016.4.55 |
[25] | P. Vellucci, A. M. Bersani, Ordering of nested square roots of according to the Gray code, Ramanujan J., 45 (2018), 197–210. doi: 10.1007/s11139-016-9862-5 |
[26] | T. Wang, W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roum., 55 (2012), 95–103. |
[27] | F. Yousef, T. Al-Hawary, G. Murugusundaramoorthy, Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator, Afr. Mat., 30 (2019), 495–503. doi: 10.1007/s13370-019-00662-7 |
[28] | F. Yousef, B. Frasin, T. Al-Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat, 32 (2018), 3229–3236. doi: 10.2298/FIL1809229Y |
[29] | F. Yousef, S. Alroud, M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Boletín de la Sociedad Matemática Mexicana, (2019), 1–11. |
[30] | A. Zireh, E. Analouei Adegani, S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016), 487–504. doi: 10.36045/bbms/1480993582 |