In this paper, we at first develop a generalized integral identity by associating Riemann-Liouville (RL) fractional integral of a function concerning another function. By using this identity estimates for various convexities are accomplish which are fractional integral inequalities. From our results, we obtained bounds of known fractional results which are discussed in detail. As applications of the derived results, we obtain the mid-point-type inequalities. These outcomes might be helpful in the investigation of the uniqueness of partial differential equations and fractional boundary value problems.
Citation: Dumitru Baleanu, Muhammad Samraiz, Zahida Perveen, Sajid Iqbal, Kottakkaran Sooppy Nisar, Gauhar Rahman. Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function[J]. AIMS Mathematics, 2021, 6(5): 4280-4295. doi: 10.3934/math.2021253
In this paper, we at first develop a generalized integral identity by associating Riemann-Liouville (RL) fractional integral of a function concerning another function. By using this identity estimates for various convexities are accomplish which are fractional integral inequalities. From our results, we obtained bounds of known fractional results which are discussed in detail. As applications of the derived results, we obtain the mid-point-type inequalities. These outcomes might be helpful in the investigation of the uniqueness of partial differential equations and fractional boundary value problems.
[1] | Y. Cho, I. Kim, D. Sheen, A fractional-order model for MINMOD Millennium, Math. Biosci., 262 (2015), 36–45. doi: 10.1016/j.mbs.2014.11.008 |
[2] | R. L. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, J. Vib. Control, 14 (2008), 1431–1442. doi: 10.1177/1077546307087439 |
[3] | W. Chen, G. Pang, A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction, J. Comput. Phys., 309 (2016), 350–367. doi: 10.1016/j.jcp.2016.01.003 |
[4] | N. M. Grahovac, M. M. Zigic, Modelling of the hamstring muscle group by use of fractional derivatives, Comput. Math. Appl., 59 (2010), 1695–1700. doi: 10.1016/j.camwa.2009.08.011 |
[5] | Y. A. Rossikhin, M. V. Shitikova, Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts, Cent. Eur. J. Phys., 11 (2013), 760–778. |
[6] | M. A. Balci, Fractional virus epidemic model on financial networks, Open Math., 14 (2016), 1074–1086. doi: 10.1515/math-2016-0098 |
[7] | H. E. Roman, M. Porto, Fractional derivatives of random walks: Time series with long-time memory, Phys. Rev. E, 78 (2008), 031127. doi: 10.1103/PhysRevE.78.031127 |
[8] | M. A. Moreles, R. Lainez, Mathematical modelling of fractional order circuit elements and bioimpedance applications, Commun. Nonlinear Sci. Numer. Simul., 46 (2017), 81–88. doi: 10.1016/j.cnsns.2016.10.020 |
[9] | E. Reyes-Melo, J. Martinez-Vega, C. Guerrero-Salazar, U. Ortiz-Mendez, Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials, J. Appl. Polymer Sci., 98 (2005), 923–935. doi: 10.1002/app.22057 |
[10] | J. M. Carcione, Theory and modeling of constant-$QP$- and $S$-waves using fractional time derivatives, Geophysics, 74 (2009), 1–11. doi: 10.1190/1.3273876 |
[11] | J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30 (1905), 175–193. |
[12] | W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemein konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math., 23 (1978), 13–20. |
[13] | I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals Series and Products, $7$ Eds., San Diego: Academic Press, 1980. |
[14] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Switzerland: Gordon and Breach, 1993. |
[15] | H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018 |
[16] | T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. doi: 10.1016/j.cam.2018.07.018 |
[17] | F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1–16. doi: 10.1186/s13662-016-1057-2 |
[18] | E. Set, I. Iscan, M. Z. Sarikaya, M. E. Ozdemir, On new inequalities of Hermite-Hadamard-Fejèr type for convex functions via fractional integrals, Appl. Math. Comput., 259 (2015), 875–881. |
[19] | M. T. Hakiki, A. Wibowo, Hermite-Hadamard-Fejèr type inequalities for s-convex functions in the second sense via Riemann-Liouville fractional integral, J. Phys. Conf. Ser., 1442 (2020), 012039. doi: 10.1088/1742-6596/1442/1/012039 |