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1. Introduction and preliminaries

LetA indicate an analytic functions family, which is normalized under the condition f (0) = f ′(0)−
1 = 0 in U = {z : z ∈ C and |z | < 1} and given by the following Taylor-Maclaurin series:

f (z) = z +

∞∑
n=2

anzn . (1.1)

Further, by S we shall denote the class of all functions inA which are univalent in U.
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With a view to recalling the principle of subordination between analytic functions, let the functions
f and g be analytic in U. Then we say that the function f is subordinate to g if there exists a Schwarz
function w (z), analytic in U with

ω (0) = 0, |ω(z)| < 1, (z ∈ U)

such that
f (z) = g (ω (z)).

We denote this subordination by
f ≺ g or f (z) ≺ g (z).

In particular, if the function g is univalent in U, the above subordination is equivalent to

f (0) = g (0), f (U) ⊂ g (U).

The Koebe-One Quarter Theorem [11] asserts that image of U under every univalent function f ∈ A
contains a disc of radius 1

4 . Thus every univalent function f has an inverse f −1 satisfying f −1( f (z)) =

z and f ( f −1 (w)) = w (|w| < r 0( f ), r 0( f ) > 1
4 ), where

f −1(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent functions in U if both f and f −1 are univalent in U.
A function f ∈ S is said to be bi-univalent in U if there exists a function g ∈ S such that g(z) is an
univalent extension of f −1 to U. Let Λ denote the class of bi-univalent functions in U. The functions

z
1−z , − log(1−z), 1

2 log
(

1+z
1−z

)
are in the class Λ (see details in [20]). However, the familiar Koebe function

is not bi-univalent. Lewin [17] investigated the class of bi-univalent functions Λ and obtained a bound
|a2| ≤ 1.51. Motivated by the work of Lewin [17], Brannan and Clunie [9] conjectured that |a2| ≤

√
2.

The coefficient estimate problem for |an| (n ∈ N, n ≥ 3) is still open ( [20]). Brannan and Taha [10]
also worked on certain subclasses of the bi-univalent function class Λ and obtained estimates for their
initial coefficients. Various classes of bi-univalent functions were introduced and studied in recent
times, the study of bi-univalent functions gained momentum mainly due to the work of Srivastava et
al. [20]. Motivated by this, many researchers [1], [4–8], [13–15], [20], [21], and [27–29], also the
references cited there in) recently investigated several interesting subclasses of the class Λ and found
non-sharp estimates on the first two Taylor-Maclaurin coefficients. Recently, many researchers have
been exploring bi-univalent functions, few to mention Fibonacci polynomials, Lucas polynomials,
Chebyshev polynomials, Pell polynomials, Lucas–Lehmer polynomials, orthogonal polynomials and
the other special polynomials and their generalizations are of great importance in a variety of branches
such as physics, engineering, architecture, nature, art, number theory, combinatorics and numerical
analysis. These polynomials have been studied in several papers from a theoretical point of view (see,
for example, [23–30] also see references therein).

We recall the following results relevant for our study as stated in [3].
Let p(x) and q(x) be polynomials with real coefficients. The (p, q)−Lucas polynomials Lp,q,n(x) are

defined by the recurrence relation

Lp,q,n(x) = p(x)Lp,q,n−1(x) + q(x)Lp,q,n−2(x) (n ≥ 2),
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from which the first few Lucas polynomials can be found as

Lp,q,0(x) = 2,
Lp,q,1(x) = p(x),
Lp,q,2(x) = p2(x) + 2q(x),
Lp,q,3(x) = p3(x) + 3p(x)q(x), ... (1.3)

For the special cases of p(x) and q(x), we can get the polynomials given Lx,1,n(x) ≡ Ln(x)
Lucas polynomials, L2x,1,n(x) ≡ Dn(x) Pell–Lucas polynomials, L1,2x,n(x) ≡ jn(x) Jacobsthal–
Lucas polynomials, L3x,−2,n(x) ≡ Fn(x) Fermat–Lucas polynomials, L2x,−1,n(x) ≡ Tn(x) Chebyshev
polynomials first kind.

Lemma 1.1. [16] Let G{L(x)}(z)be the generating function of the (p, q)−Lucas polynomial sequence
Lp,q,n(x). Then,

G{L(x)}(z) =

∞∑
n=0

Lp,q,n(x)zn =
2 − p(x)z

1 − p(x)z − q(x)z2

and

G{L(x)}(z) = G{L(x)}(z) − 1 = 1 +

∞∑
n=1

Lp,q,n(x)zn =
1 + q(x)z2

1 − p(x)z − q(x)z2 .

Definition 1.2. [22] For ϑ ≥ 0, δ ∈ R, ϑ + iδ , 0 and f ∈ A, let B(ϑ, δ) denote the class of Bazilevič
function if and only if

Re
(z f ′(z)

f (z)

) (
f (z)
z

)ϑ+iδ > 0 .

Several authors have researched different subfamilies of the well-known Bazilevič functions of type
ϑ from various viewpoints (see [3] and [19]). For Bazilevič functions of order ϑ + iδ, there is no much
work associated with Lucas polynomials in the literature. Initiating an exploration of properties of
Lucas polynomials associated with Bazilevič functions of order ϑ + iδ is the main goal of this paper.
To do so, we take into account the following definitions. In this paper motivated by the very recent
work of Altinkaya and Yalcin [3] (also see [18]) we define a new class B(ϑ, δ), bi-Bazilevič function
of Λ based on (p, q)− Lucas polynomials as below:

Definition 1.3. For f ∈ Λ, ϑ ≥ 0, δ ∈ R, ϑ + iδ , 0 and let B(ϑ, δ) denote the class of Bi-Bazilevič
functions of order ϑ + iδ if only if(z f ′(z)

f (z)

) (
f (z)
z

)ϑ+iδ ≺ G{L(x)}(z) (z ∈ U) (1.4)

and (zg′(w)
g(w)

) (
g(w)

w

)ϑ+iδ ≺ G{L(x)}(w) (w ∈ U), (1.5)

where GLp,q,n(z) ∈ Φ and the function g is described as g(w) = f −1(w).
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Remark 1.4. We note that for δ = 0 the class R(ϑ, 0) = R(ϑ) is defined by Altinkaya and Yalcin [2].

The class B(0, 0) = S∗
Λ

is defined as follows:

Definition 1.5. A function f ∈ Λ is said to be in the class S∗
Λ

, if the following subordinations hold

z f ′(z)
f (z)

≺ G{L(x)}(z)(z ∈ U)

and
wg′(w)
g(w)

≺ G{L(x)}(w)(w ∈ U)

where g(w) = f −1(w).

We begin this section by finding the estimates of the coefficients |a2| and |a3| for functions in the
class B(ϑ, δ).

2. Coefficient bounds for the function class B(ϑ, δ)

Theorem 2.1. Let the function f (z) given by 1.1 be in the class B(ϑ, δ). Then

|a2| ≤
p(x)

√
2p(x)√

|{
(
(ϑ + iδ)2 + 3 (ϑ + iδ) + 2

)
− 2 (ϑ + iδ + 1)2

}p2(x) − 4q(x) (ϑ + iδ + 1)2
|

.

and

|a3| ≤
p2(x)

(ϑ + 1)2 + δ2 +
p(x)√

(ϑ + 2)2 + δ2
.

Proof. Let f ∈ B(ϑ, δ) there exist two analytic functions u, v : U → U with u(0) = 0 = v(0), such that
|u(z)| < 1, |v(w)| < 1, we can write from (1.4) and (1.5), we have(z f ′(z)

f (z)

) (
f (z)
z

)ϑ+iδ = G{L(x)}(z) (z ∈ U), (2.1)

and (zg′(w)
g(w)

) (
g(w)

w

)ϑ+iδ = G{L(x)}(w) (w ∈ U), (2.2)

It is fairly well known that if
|u(z)| = |u1z + u2z2 + · · · | < 1,

and
|v(w)| = |v1w + v2w2 + · · · | < 1,

then
|uk| ≤ 1 and |vk| ≤ 1 (k ∈ N),
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so we have,

G{L(x)}(u(z)) = 1 +Lp,q,1(x)u(z) +Lp,q,2(x)u2(z) + . . .

= 1 +Lp,q,1(x)u1z + [Lp,q,1(x)u2 +Lp,q,2(x)u2
1]z2 + . . . (2.3)

and

G{L(x)}(v(w)) = 1 +Lp,q,1(x)v(w) +Lp,q,2(x)v2(w) + . . .

= 1 +Lp,q,1(x)v1w + [Lp,q,1(x)v2 +Lp,q,2(x)v2
1]w2 + . . . (2.4)

From the equalities (2.1) and (2.2), we obtain that(z f ′(z)
f (z)

) (
f (z)
z

)ϑ+iδ = 1 +Lp,q,1(x)u1z + [Lp,q,1(x)u2 +Lp,q,2(x)u2
1]z2 + . . . , (2.5)

and (zg′(w)
g(w)

) (
g(w)

w

)ϑ+iδ = 1 +Lp,q,1(x)v1w + [Lp,q,1(x)v2 +Lp,q,2(x)v2
1]w2 + . . . , (2.6)

It follows from (2.5) and (2.6) that

(ϑ + iδ + 1) a2 = Lp,q,1(x)u1, (2.7)

(ϑ + iδ − 1) (ϑ + iδ + 2)
2

a2
2 − (ϑ + iδ + 2) a3 = Lp,q,1(x)u2 +Lp,q,2(x)u2

1, (2.8)

and
− (ϑ + iδ + 1) a2 = Lp,q,1(x)v1, (2.9)

(ϑ + iδ + 2) (ϑ + iδ + 3)
2

a2
2 + (ϑ + iδ + 2) a3 = Lp,q,1(x)v2 +Lp,q,2(x)v2

1. (2.10)

From (2.7) and (2.9)
u1 = −v1 (2.11)

and
2 (ϑ + iδ + 1)2 a2

2 = L2
p,q,1(x)(u2

1 + v2
1), (2.12)

by adding (2.8) to (2.10) , we get(
(ϑ + iδ)2 + 3 (ϑ + iδ) + 2

)
a2

2 = Lp,q,1(x)(u2 + v2) +Lp,q,2(x)(u2
1 + v2

1), (2.13)

by using (2.12) in equality (2.13), we have((ϑ + iδ)2 + 3 (ϑ + iδ) + 2
)
−

2Lp,q,2(x) (ϑ + iδ + 1)2

L2
p,q,1(x)

 a2
2 = Lp,q,1(x)(u2 + v2),

a2
2 =

L3
p,q,1(x)(u2 + v2)[(

(ϑ + iδ)2 + 3 (ϑ + iδ) + 2
)
L2

p,q,1(x) − 2Lp,q,2(x) (ϑ + iδ + 1)2
] . (2.14)
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Thus, from (1.3) and (2.14) we get

|a2| ≤
p(x)

√
2p(x)√

|{
(
(ϑ + iδ)2 + 3 (ϑ + iδ) + 2

)
− 2 (ϑ + iδ + 1)2

}p2(x) − 4q(x) (ϑ + iδ + 1)2
|

.

Next, in order to find the bound on |a3|, by subtracting (2.10) from (2.8), we obtain

2 (ϑ + iδ + 2) a3 − 2 (ϑ + iδ + 2) a2
2 = Lp,q,1(x)(u2 − v2) +Lp,q,2(x)(u2

1 − v2
1)

2 (ϑ + iδ + 2) a3 = Lp,q,1(x)(u2 − v2) + 2 (ϑ + iδ + 2) a2
2

a3 =
Lp,q,1(x)(u2 − v2)

2 (ϑ + iδ + 2)
+ a2

2 (2.15)

Then, in view of (2.11) and (2.12), we have from (2.15)

a3 =
L2

p,q,1(x)

2 (ϑ + iδ + 2)2 (u2
1 + v2

1) +
Lp,q,1(x)

2 (ϑ + iδ + 2)
(u2 − v2).

|a3| ≤
p2(x)

|ϑ + iδ + 1|2
+

p(x)
|ϑ + iδ + 2|

=
p2(x)

(ϑ + 1)2 + δ2 +
p(x)√

(ϑ + 2)2 + δ2

This completes the proof. �

Taking δ = 0, in Theorem 2.1, we get the following corollary.

Corollary 2.2. Let the function f (z) given by (1.1) be in the class B(ϑ). Then

|a2| ≤
p(x)

√
2p(x)√

|{
(
ϑ2 + 3ϑ + 2

)
− 2 (ϑ + 1)2

}p2(x) − 4q(x) (ϑ + 1)2
|

and

|a3| ≤
p2(x)

(ϑ + 2)2 +
p(x)
ϑ + 2

Also, taking ϑ = 0 and δ = 0, in Theorem 2.1, we get the results given in [18].

3. Fekete-Szegö inequality for the class B(ϑ, δ)

Fekete-Szegö inequality is one of the famous problems related to coefficients of univalent analytic
functions. It was first given by [12], the classical Fekete-Szegö inequality for the coefficients of f ∈ S
is ∣∣∣a3 − µa2

2

∣∣∣ ≤ 1 + 2 exp (−2µ/(1 − µ)) for µ ∈ [0, 1) .
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As µ→ 1−, we have the elementary inequality
∣∣∣a3 − a2

2

∣∣∣ ≤ 1. Moreover, the coefficient functional

ςµ( f ) = a3 − µa2
2

on the normalized analytic functions f in the unit diskU plays an important role in function theory. The
problem of maximizing the absolute value of the functional ςµ( f ) is called the Fekete-Szegö problem.

In this section, we are ready to find the sharp bounds of Fekete-Szegö functional ςµ( f ) defined for
f ∈ B(ϑ, δ) given by (1.1).

Theorem 3.1. Let f given by (1.1) be in the class B(ϑ, δ) and µ ∈ R. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


p(x)√
(ϑ+2)2+δ2

, 0 ≤ |h(µ)| ≤ 1

2
√

(ϑ+2)2+δ2

2p(x) |h(µ)| , |h(µ)| ≥ 1

2
√

(ϑ+2)2+δ2

where

h(µ) =
L2

p,q,1(x)(1 − µ)(
(ϑ + iδ)2 + 3 (ϑ + iδ) + 2

)
L2

p,q,1(x) − 2Lp,q,2(x) (ϑ + iδ + 1)2
.

Proof. From (2.14) and (2.15), we conclude that

a3 − µa2
2 = (1 − µ)

L3
p,q,1(x)(u2 + v2)[(

(ϑ + iδ)2 + 3 (ϑ + iδ) + 2
)
L2

p,q,1(x) − 2Lp,q,2(x) (ϑ + iδ + 1)2
]

+
Lp,q,1(x)

2 (ϑ + iδ + 2)
(u2 − v2)

= Lp,q,1(x)
[(

h(µ) +
1

2(ϑ + iδ + 2)

)
u2 +

(
h(µ) −

1
2(ϑ + iδ + 2)

)
v2

]
where

h(µ) =
L2

p,q,1(x)(1 − µ)(
(ϑ + iδ)2 + 3 (ϑ + iδ) + 2

)
L2

p,q,1(x) − 2Lp,q,2(x) (ϑ + iδ + 1)2
.

Then, in view of (1.3), we obtain

∣∣∣a3 − µa2
2

∣∣∣ ≤


p(x)√
(ϑ+2)2+δ2

, 0 ≤ |h(µ)| ≤ 1

2
√

(ϑ+2)2+δ2

2p(x) |h(µ)| , |h(µ)| ≥ 1

2
√

(ϑ+2)2+δ2

�

We end this section with some corollaries.

Taking µ = 1 in Theorem 3.1, we get the following corollary.
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Corollary 3.2. If f ∈ B(ϑ, δ), then ∣∣∣a3 − a2
2

∣∣∣ ≤ p(x)√
(ϑ + 2)2 + δ2

.

Taking δ = 0 in Theorem 3.1, we get the following corollary.

Corollary 3.3. Let f given by (1.1) be in the class B(ϑ, 0). Then

∣∣∣a3 − µa2
2

∣∣∣ ≤  p(x)
ϑ+2 , 0 ≤ |h(µ)| ≤ 1

2(ϑ+2)
2p(x) |h(µ)| , |h(µ)| ≥ 1

2(ϑ+2)

Also, taking ϑ = 0, δ = 0 and µ = 1 in Theorem 3.1, we get the following corollary.

Corollary 3.4. Let f given by (1.1) be in the class B. Then∣∣∣a3 − a2
2

∣∣∣ ≤ p(x)
2
.
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