Mathematics

Research article

Bi-Bazilevič functions of order $\vartheta+i \delta$ associated with $(p, q)-$ Lucas polynomials

Ala Amourah ${ }^{1, *}$, B. A. Frasin ${ }^{2}$, G. Murugusundaramoorthy ${ }^{3}$ and Tariq Al-Hawary ${ }^{4}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid, Jordan
${ }^{2}$ Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan
${ }^{3}$ Department of Mathematics,School of Advanced Sciences, VIT , Vellore 632014, Tamilnadu, India
${ }^{4}$ Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan

* Correspondence: Email: alaammour@yahoo.com; Tel: 00962792290138.

Abstract

By means of $(p, q)-$ Lucas polynomials, a class of Bazilevič functions of order $\vartheta+i \delta$ in the open unit disk \mathbb{U} of analytic and bi-univalent functions is introduced. Further, we estimate coefficients bounds and Fekete-Szegö inequalities for functions belonging to this class. Several corollaries and consequences of the main results are also obtained.

Keywords: Bazilevič functions; Lucas polynomial; analytic functions; univalent functions; bi-univalent functions
Mathematics Subject Classification: 30C45

1. Introduction and preliminaries

Let \mathcal{A} indicate an analytic functions family, which is normalized under the condition $f(0)=f^{\prime}(0)-$ $1=0$ in $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and given by the following Taylor-Maclaurin series:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U}.

With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in \mathbb{U}. Then we say that the function f is subordinate to g if there exists a Schwarz function $w(z)$, analytic in \mathbb{U} with

$$
\omega(0)=0,|\omega(z)|<1,(z \in \mathbb{U})
$$

such that

$$
f(z)=g(\omega(z))
$$

We denote this subordination by

$$
f<g \text { or } f(z)<g(z) .
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
f(0)=g(0), f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

The Koebe-One Quarter Theorem [11] asserts that image of \mathbb{U} under every univalent function $f \in \mathcal{A}$ contains a disc of radius $\frac{1}{4}$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=$ z and $f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f)>\frac{1}{4}\right)$, where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent functions in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. A function $f \in \mathcal{S}$ is said to be bi-univalent in \mathbb{U} if there exists a function $g \in \mathcal{S}$ such that $g(z)$ is an univalent extension of f^{-1} to \mathbb{U}. Let Λ denote the class of bi-univalent functions in \mathbb{U}. The functions $\frac{z}{1-z},-\log (1-z), \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)$ are in the class Λ (see details in [20]). However, the familiar Koebe function is not bi-univalent. Lewin [17] investigated the class of bi-univalent functions Λ and obtained a bound $\left|a_{2}\right| \leq 1.51$. Motivated by the work of Lewin [17], Brannan and Clunie [9] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. The coefficient estimate problem for $\left|a_{n}\right| \quad(n \in \mathbb{N}, \quad n \geq 3$) is still open ([20]). Brannan and Taha [10] also worked on certain subclasses of the bi-univalent function class Λ and obtained estimates for their initial coefficients. Various classes of bi-univalent functions were introduced and studied in recent times, the study of bi-univalent functions gained momentum mainly due to the work of Srivastava et al. [20]. Motivated by this, many researchers [1], [4-8], [13-15], [20], [21], and [27-29], also the references cited there in) recently investigated several interesting subclasses of the class Λ and found non-sharp estimates on the first two Taylor-Maclaurin coefficients. Recently, many researchers have been exploring bi-univalent functions, few to mention Fibonacci polynomials, Lucas polynomials, Chebyshev polynomials, Pell polynomials, Lucas-Lehmer polynomials, orthogonal polynomials and the other special polynomials and their generalizations are of great importance in a variety of branches such as physics, engineering, architecture, nature, art, number theory, combinatorics and numerical analysis. These polynomials have been studied in several papers from a theoretical point of view (see, for example, [23-30] also see references therein).

We recall the following results relevant for our study as stated in [3].
Let $p(x)$ and $q(x)$ be polynomials with real coefficients. The (p, q)-Lucas polynomials $\mathcal{L}_{p, q, n}(x)$ are defined by the recurrence relation

$$
\mathcal{L}_{p, q, n}(x)=p(x) \mathcal{L}_{p, q, n-1}(x)+q(x) \mathcal{L}_{p, q, n-2}(x) \quad(n \geq 2),
$$

from which the first few Lucas polynomials can be found as

$$
\begin{align*}
& \mathcal{L}_{p, q, 0}(x)=2, \\
& \mathcal{L}_{p, q, 1}(x)=p(x), \\
& \mathcal{L}_{p, q, 2}(x)=p^{2}(x)+2 q(x), \\
& \mathcal{L}_{p, q, 3}(x)=p^{3}(x)+3 p(x) q(x), \ldots \tag{1.3}
\end{align*}
$$

For the special cases of $p(x)$ and $q(x)$, we can get the polynomials given $\mathcal{L}_{x, 1, n}(x) \equiv \mathcal{L}_{n}(x)$ Lucas polynomials, $\mathcal{L}_{2 x, 1, n}(x) \equiv \mathcal{D}_{n}(x)$ Pell-Lucas polynomials, $\mathcal{L}_{1,2 x, n}(x) \equiv j_{n}(x)$ JacobsthalLucas polynomials, $\mathcal{L}_{3 x,-2, n}(x) \equiv F_{n}(x)$ Fermat-Lucas polynomials, $\mathcal{L}_{2 x,-1, n}(x) \equiv T_{n}(x)$ Chebyshev polynomials first kind.

Lemma 1.1. [16] Let $G\{\mathcal{L}(x)\}(z)$ be the generating function of the (p, q)-Lucas polynomial sequence $\mathcal{L}_{p, q, n}(x)$. Then,

$$
G\{\mathcal{L}(x)\}(z)=\sum_{n=0}^{\infty} \mathcal{L}_{p, q, n}(x) z^{n}=\frac{2-p(x) z}{1-p(x) z-q(x) z^{2}}
$$

and

$$
\mathcal{G}_{\{\mathcal{L}(x)\}}(z)=G\{\mathcal{L}(x)\}(z)-1=1+\sum_{n=1}^{\infty} \mathcal{L}_{p, q, n}(x) z^{n}=\frac{1+q(x) z^{2}}{1-p(x) z-q(x) z^{2}} .
$$

Definition 1.2. [22] For $\vartheta \geq 0, \delta \in \mathbb{R}, \vartheta+i \delta \neq 0$ and $f \in \mathcal{A}$, let $\mathcal{B}(\vartheta, \delta)$ denote the class of Bazilevič function if and only if

$$
\operatorname{Re}\left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{f(z)}{z}\right)^{\vartheta+i \delta}\right]>0 .
$$

Several authors have researched different subfamilies of the well-known Bazilevič functions of type ϑ from various viewpoints (see [3] and [19]). For Bazilevič functions of order $\vartheta+i \delta$, there is no much work associated with Lucas polynomials in the literature. Initiating an exploration of properties of Lucas polynomials associated with Bazilevič functions of order $\vartheta+i \delta$ is the main goal of this paper. To do so, we take into account the following definitions. In this paper motivated by the very recent work of Altinkaya and Yalcin [3] (also see [18]) we define a new class $\mathcal{B}(\vartheta, \delta)$, bi-Bazilevič function of Λ based on (p, q) - Lucas polynomials as below:

Definition 1.3. For $f \in \Lambda, \vartheta \geq 0, \delta \in \mathbb{R}, \vartheta+i \delta \neq 0$ and let $\mathcal{B}(\vartheta, \delta)$ denote the class of Bi-Bazilevič functions of order $\vartheta+i \delta$ if only if

$$
\begin{equation*}
\left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{f(z)}{z}\right)^{\vartheta+i \delta}\right]<\mathcal{G}_{\{\mathcal{L}(x)\}}(z) \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left(\frac{z g^{\prime}(w)}{g(w)}\right)\left(\frac{g(w)}{w}\right)^{\vartheta+i \delta}\right]<\mathcal{G}_{\{\mathcal{L}(x)\}}(w) \quad(w \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

where $\mathcal{G}_{\mathcal{L}_{p, q, n}}(z) \in \Phi$ and the function g is described as $g(w)=f^{-1}(w)$.

Remark 1.4. We note that for $\delta=0$ the class $R(\vartheta, 0)=R(\vartheta)$ is defined by Altinkaya and Yalcin [2].
The class $\mathcal{B}(0,0)=\mathcal{S}_{\Lambda}^{*}$ is defined as follows:
Definition 1.5. A function $f \in \Lambda$ is said to be in the class $\mathcal{S}_{\Lambda}^{*}$, if the following subordinations hold

$$
\frac{z f^{\prime}(z)}{f(z)}<\mathcal{G}_{\{\mathcal{L}(x)\}}(z)(z \in \mathbb{U})
$$

and

$$
\frac{w g^{\prime}(w)}{g(w)}<\mathcal{G}_{\{\mathcal{L}(x)\}}(w)(w \in \mathbb{U})
$$

where $g(w)=f^{-1}(w)$.
We begin this section by finding the estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathcal{B}(\vartheta, \delta)$.

2. Coefficient bounds for the function class $\mathcal{B}(\vartheta, \delta)$

Theorem 2.1. Let the function $f(z)$ given by 1.1 be in the class $\mathcal{B}(\vartheta, \delta)$. Then

$$
\left|a_{2}\right| \leq \frac{p(x) \sqrt{2 p(x)}}{\sqrt{\left|\left\{\left((\vartheta+i \delta)^{2}+3(\vartheta+i \delta)+2\right)-2(\vartheta+i \delta+1)^{2}\right\} p^{2}(x)-4 q(x)(\vartheta+i \delta+1)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{p^{2}(x)}{(\vartheta+1)^{2}+\delta^{2}}+\frac{p(x)}{\sqrt{(\vartheta+2)^{2}+\delta^{2}}}
$$

Proof. Let $f \in \mathcal{B}(\vartheta, \delta)$ there exist two analytic functions $u, v: \mathbb{U} \rightarrow \mathbb{U}$ with $u(0)=0=v(0)$, such that $|u(z)|<1,|v(w)|<1$, we can write from (1.4) and (1.5), we have

$$
\begin{equation*}
\left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{f(z)}{z}\right)^{\vartheta+i \delta}\right]=\mathcal{G}_{\{\mathcal{L}(x)\}}(z) \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left(\frac{z g^{\prime}(w)}{g(w)}\right)\left(\frac{g(w)}{w}\right)^{\vartheta+i \delta}\right]=\mathcal{G}_{\{\mathcal{L}(x)\}}(w) \quad(w \in \mathbb{U}), \tag{2.2}
\end{equation*}
$$

It is fairly well known that if

$$
|u(z)|=\left|u_{1} z+u_{2} z^{2}+\cdots\right|<1,
$$

and

$$
|v(w)|=\left|v_{1} w+v_{2} w^{2}+\cdots\right|<1
$$

then

$$
\left|u_{k}\right| \leq 1 \quad \text { and } \quad\left|v_{k}\right| \leq 1 \quad(k \in \mathbb{N})
$$

so we have,

$$
\begin{align*}
\mathcal{G}_{\{\mathcal{L}(x)\}}(u(z)) & =1+\mathcal{L}_{p, q, 1}(x) u(z)+\mathcal{L}_{p, q, 2}(x) u^{2}(z)+\ldots \\
& =1+\mathcal{L}_{p, q, 1}(x) u_{1} z+\left[\mathcal{L}_{p, q, 1}(x) u_{2}+\mathcal{L}_{p, q, 2}(x) u_{1}^{2}\right] z^{2}+\ldots \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{G}_{\{\mathcal{L}(x)\}}(v(w)) & =1+\mathcal{L}_{p, q, 1}(x) v(w)+\mathcal{L}_{p, q, 2}(x) v^{2}(w)+\ldots \\
& =1+\mathcal{L}_{p, q, 1}(x) v_{1} w+\left[\mathcal{L}_{p, q, 1}(x) v_{2}+\mathcal{L}_{p, q, 2}(x) v_{1}^{2}\right] w^{2}+\ldots \tag{2.4}
\end{align*}
$$

From the equalities (2.1) and (2.2), we obtain that

$$
\begin{equation*}
\left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{f(z)}{z}\right)^{\vartheta+i \delta}\right]=1+\mathcal{L}_{p, q, 1}(x) u_{1} z+\left[\mathcal{L}_{p, q, 1}(x) u_{2}+\mathcal{L}_{p, q, 2}(x) u_{1}^{2}\right] z^{2}+\ldots \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left(\frac{z g^{\prime}(w)}{g(w)}\right)\left(\frac{g(w)}{w}\right)^{\vartheta+i \delta}\right]=1+\mathcal{L}_{p, q, 1}(x) v_{1} w+\left[\mathcal{L}_{p, q, 1}(x) v_{2}+\mathcal{L}_{p, q, 2}(x) v_{1}^{2}\right] w^{2}+\ldots \tag{2.6}
\end{equation*}
$$

It follows from (2.5) and (2.6) that

$$
\begin{gather*}
(\vartheta+i \delta+1) a_{2}=\mathcal{L}_{p, q, 1}(x) u_{1}, \tag{2.7}\\
\frac{(\vartheta+i \delta-1)(\vartheta+i \delta+2)}{2} a_{2}^{2}-(\vartheta+i \delta+2) a_{3}=\mathcal{L}_{p, q, 1}(x) u_{2}+\mathcal{L}_{p, q, 2}(x) u_{1}^{2} \tag{2.8}
\end{gather*}
$$

and

$$
\begin{gather*}
-(\vartheta+i \delta+1) a_{2}=\mathcal{L}_{p, q, 1}(x) v_{1}, \tag{2.9}\\
\frac{(\vartheta+i \delta+2)(\vartheta+i \delta+3)}{2} a_{2}^{2}+(\vartheta+i \delta+2) a_{3}=\mathcal{L}_{p, q, 1}(x) v_{2}+\mathcal{L}_{p, q, 2}(x) v_{1}^{2} \tag{2.10}
\end{gather*}
$$

From (2.7) and (2.9)

$$
\begin{equation*}
u_{1}=-v_{1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\vartheta+i \delta+1)^{2} a_{2}^{2}=\mathcal{L}_{p, q, 1}^{2}(x)\left(u_{1}^{2}+v_{1}^{2}\right), \tag{2.12}
\end{equation*}
$$

by adding (2.8) to (2.10), we get

$$
\begin{equation*}
\left((\vartheta+i \delta)^{2}+3(\vartheta+i \delta)+2\right) a_{2}^{2}=\mathcal{L}_{p, q, 1}(x)\left(u_{2}+v_{2}\right)+\mathcal{L}_{p, q, 2}(x)\left(u_{1}^{2}+v_{1}^{2}\right), \tag{2.13}
\end{equation*}
$$

by using (2.12) in equality (2.13), we have

$$
\begin{gather*}
{\left[\left((\vartheta+i \delta)^{2}+3(\vartheta+i \delta)+2\right)-\frac{2 \mathcal{L}_{p, q, 2}(x)(\vartheta+i \delta+1)^{2}}{\mathcal{L}_{p, q, 1}^{2}(x)}\right] a_{2}^{2}=\mathcal{L}_{p, q, 1}(x)\left(u_{2}+v_{2}\right)} \\
a_{2}^{2}=\frac{\mathcal{L}_{p, q, 1}^{3}(x)\left(u_{2}+v_{2}\right)}{\left[\left((\vartheta+i \delta)^{2}+3(\vartheta+i \delta)+2\right) \mathcal{L}_{p, q, 1}^{2}(x)-2 \mathcal{L}_{p, q, 2}(x)(\vartheta+i \delta+1)^{2}\right]} . \tag{2.14}
\end{gather*}
$$

Thus, from (1.3) and (2.14) we get

$$
\left|a_{2}\right| \leq \frac{p(x) \sqrt{2 p(x)}}{\sqrt{\left|\left\{\left((\vartheta+i \delta)^{2}+3(\vartheta+i \delta)+2\right)-2(\vartheta+i \delta+1)^{2}\right\} p^{2}(x)-4 q(x)(\vartheta+i \delta+1)^{2}\right|}} .
$$

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.10) from (2.8), we obtain

$$
\begin{align*}
2(\vartheta+i \delta+2) a_{3}-2(\vartheta+i \delta+2) a_{2}^{2} & =\mathcal{L}_{p, q, 1}(x)\left(u_{2}-v_{2}\right)+\mathcal{L}_{p, q, 2}(x)\left(u_{1}^{2}-v_{1}^{2}\right) \\
2(\vartheta+i \delta+2) a_{3} & =\mathcal{L}_{p, q, 1}(x)\left(u_{2}-v_{2}\right)+2(\vartheta+i \delta+2) a_{2}^{2} \\
a_{3} & =\frac{\mathcal{L}_{p, q, 1}(x)\left(u_{2}-v_{2}\right)}{2(\vartheta+i \delta+2)}+a_{2}^{2} \tag{2.15}
\end{align*}
$$

Then, in view of (2.11) and (2.12), we have from (2.15)

$$
\begin{gathered}
a_{3}=\frac{\mathcal{L}_{p, q, 1}^{2}(x)}{2(\vartheta+i \delta+2)^{2}}\left(u_{1}^{2}+v_{1}^{2}\right)+\frac{\mathcal{L}_{p, q, 1}(x)}{2(\vartheta+i \delta+2)}\left(u_{2}-v_{2}\right) . \\
\left|a_{3}\right|
\end{gathered} \begin{gathered}
\leq \frac{p^{2}(x)}{|\vartheta+i \delta+1|^{2}}+\frac{p(x)}{|\vartheta+i \delta+2|} \\
=\frac{p^{2}(x)}{(\vartheta+1)^{2}+\delta^{2}}+\frac{p(x)}{\sqrt{(\vartheta+2)^{2}+\delta^{2}}}
\end{gathered}
$$

This completes the proof.
Taking $\delta=0$, in Theorem 2.1, we get the following corollary.
Corollary 2.2. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{B}(\vartheta)$. Then

$$
\left|a_{2}\right| \leq \frac{p(x) \sqrt{2 p(x)}}{\sqrt{\left|\left\{\left(\vartheta^{2}+3 \vartheta+2\right)-2(\vartheta+1)^{2}\right\} p^{2}(x)-4 q(x)(\vartheta+1)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{p^{2}(x)}{(\vartheta+2)^{2}}+\frac{p(x)}{\vartheta+2}
$$

Also, taking $\vartheta=0$ and $\delta=0$, in Theorem 2.1, we get the results given in [18].

3. Fekete-Szegö inequality for the class $\mathcal{B}(\vartheta, \delta)$

Fekete-Szegö inequality is one of the famous problems related to coefficients of univalent analytic functions. It was first given by [12], the classical Fekete-Szegö inequality for the coefficients of $f \in \mathcal{S}$ is

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1+2 \exp (-2 \mu /(1-\mu)) \text { for } \mu \in[0,1) .
$$

As $\mu \rightarrow 1^{-}$, we have the elementary inequality $\left|a_{3}-a_{2}^{2}\right| \leq 1$. Moreover, the coefficient functional

$$
\varsigma_{\mu}(f)=a_{3}-\mu a_{2}^{2}
$$

on the normalized analytic functions f in the unit disk \mathbb{U} plays an important role in function theory. The problem of maximizing the absolute value of the functional $\varsigma \mu(f)$ is called the Fekete-Szegö problem.

In this section, we are ready to find the sharp bounds of Fekete-Szegö functional $\varsigma_{\mu}(f)$ defined for $f \in \mathcal{B}(\vartheta, \delta)$ given by (1.1).

Theorem 3.1. Let f given by (1.1) be in the class $\mathcal{B}(\vartheta, \delta)$ and $\mu \in \mathbb{R}$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cr}
\frac{p(x)}{\sqrt{(\vartheta+2)^{2}+\delta^{2}}}, & 0 \leq|h(\mu)| \leq \frac{1}{2 \sqrt{(\vartheta+2)^{2}+\delta^{2}}} \\
2 p(x)|h(\mu)|, & |h(\mu)| \geq \frac{1}{2 \sqrt{(\vartheta+2)^{2}+\delta^{2}}}
\end{array}\right.
$$

where

$$
h(\mu)=\frac{\mathcal{L}_{p, q, 1}^{2}(x)(1-\mu)}{\left((\vartheta+i \delta)^{2}+3(\vartheta+i \delta)+2\right) \mathcal{L}_{p, q, 1}^{2}(x)-2 \mathcal{L}_{p, q, 2}(x)(\vartheta+i \delta+1)^{2}} .
$$

Proof. From (2.14) and (2.15), we conclude that

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =(1-\mu) \frac{\mathcal{L}_{p, q, 1}^{3}(x)\left(u_{2}+v_{2}\right)}{\left[\left((\vartheta+i \delta)^{2}+3(\vartheta+i \delta)+2\right) \mathcal{L}_{p, q, 1}^{2}(x)-2 \mathcal{L}_{p, q, 2}(x)(\vartheta+i \delta+1)^{2}\right]} \\
& +\frac{\mathcal{L}_{p, q, 1}(x)}{2(\vartheta+i \delta+2)}\left(u_{2}-v_{2}\right) \\
= & \mathcal{L}_{p, q, 1}(x)\left[\left(h(\mu)+\frac{1}{2(\vartheta+i \delta+2)}\right) u_{2}+\left(h(\mu)-\frac{1}{2(\vartheta+i \delta+2)}\right) v_{2}\right]
\end{aligned}
$$

where

$$
h(\mu)=\frac{\mathcal{L}_{p, q, 1}^{2}(x)(1-\mu)}{\left((\vartheta+i \delta)^{2}+3(\vartheta+i \delta)+2\right) \mathcal{L}_{p, q, 1}^{2}(x)-2 \mathcal{L}_{p, q, 2}(x)(\vartheta+i \delta+1)^{2}} .
$$

Then, in view of (1.3), we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cr}
\frac{p(x)}{\sqrt{(\vartheta+2)^{2}+\delta^{2}}}, & 0 \leq|h(\mu)| \leq \frac{1}{2 \sqrt{(\vartheta+2)^{2}+\delta^{2}}} \\
2 p(x)|h(\mu)|, & |h(\mu)| \geq \frac{1}{2 \sqrt{(\vartheta+2)^{2}+\delta^{2}}}
\end{array}\right.
$$

We end this section with some corollaries.
Taking $\mu=1$ in Theorem 3.1, we get the following corollary.

Corollary 3.2. If $f \in \mathcal{B}(\vartheta, \delta)$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{p(x)}{\sqrt{(\vartheta+2)^{2}+\delta^{2}}} .
$$

Taking $\delta=0$ in Theorem 3.1, we get the following corollary.
Corollary 3.3. Let f given by (1.1) be in the class $\mathcal{B}(\vartheta, 0)$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cr}
\frac{p(x)}{\vartheta+2}, & 0 \leq|h(\mu)| \leq \frac{1}{2(\vartheta+2)} \\
2 p(x)|h(\mu)|, & |h(\mu)| \geq \frac{1}{2(\vartheta+2)}
\end{array}\right.
$$

Also, taking $\vartheta=0, \delta=0$ and $\mu=1$ in Theorem 3.1, we get the following corollary.

Corollary 3.4. Let f given by (1.1) be in the class \mathcal{B}. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{p(x)}{2} .
$$

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. I. Aldawish, T. Al-Hawary, B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics, 8 (2020), 783.
2. Ş. Altınkaya, S. Yalçın, On the Chebyshev polynomial coefficient problem of bi-Bazilevic function, TWMS J. App. Eng. Math., 10 (2020), 251-258.
3. Ş. Altınkaya, S. Yalçın, On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ, Boletín de la Sociedad Matemática Mexicana, 25 (2019), 567-575.
4. Ş. Altınkaya, S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, 2015 (2015), 1-5.
5. A. Amourah, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to (p, q)-Lucas polynomials, TWMS Journal of Applied and Engineering (in press).
6. A. Amourah, , Faber polynomial coefficient estimates for a class of analytic bi-univalent functions, AIP Conference Proceedings, 2096 (2019), 020024. AIP Publishing LLC.
7. A. Amourah, Initial bounds for analytic and bi-univalent functions by means of $(p, q)-$ Chebyshev polynomials defined by differential operator, General Letters in Mathematics, 7 (2019), 45-51.
8. A. Amourah, M. Illafe, A Comprehensive subclass of analytic and Bi-univalent functions associated with subordination, Palestine Journal of Mathematics, 9 (2020), 187-193.
9. D. Brannan, J. Clunie, Aspects of contemporary complex analysis, Academic Press, New York, 1980.
10. D. Brannan, T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and Its Applications, (1988), 53-60.
11. P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.
12. M. Fekete, G. Szegö, Eine Bemerkung ber Ungerade Schlichte Funktionen, J. London Math. Soc., 1 (1933), 85-89.
13. B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573.
14. B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43 (2014), 383-389.
15. B. A. Frasin, T. Al-Hawary, Initial Maclaurin coefficients bounds for new subclasses of bi-univalent functions, Theory Appl. Math. Comp. Sci., 5 (2015), 186-193.
16. G. Y. Lee, M. Aşçı, Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials, J. Appl. Math., 2012 (2012), 1-18.
17. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68.
18. G. Murugusundaramoorthy, S. Yalçın, On the λ - Psedo-bi-starlike functions related to (p, q)-Lucas polynomial, Libertas Mathematica (newseries), 39 (2019), 79-88.
19. H. M. Srivastava, G. Murugusundaramoorthy, K. Vijaya, Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal., 2 (2013), 167-181.
20. H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.
21. H. M. Srivastava, S. Bulut, CM. saglar, N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831-842.
22. T. Sheil-Small, On Bazilevič functions, The Quarterly Journal of Mathematics, 23 (1972), 135142.
23. P. Vellucci, A. M. Bersani, The class of Lucas-Lehmer polynomials, Rend. Mat. Appl. serie VII, 37 (2016), 43-62.
24. P. Vellucci, A. M. Bersani, Orthogonal polynomials and Riesz bases applied to the solution of Love's equation, Math. Mech. Complex Syst., 4 (2016), 55-66.
25. P. Vellucci, A. M. Bersani, Ordering of nested square roots of according to the Gray code, Ramanujan J., 45 (2018), 197-210.
26. T. Wang, W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roum., 55 (2012), 95-103.
27. F. Yousef, T. Al-Hawary, G. Murugusundaramoorthy, Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator, Afr. Mat., 30 (2019), 495-503.
28. F. Yousef, B. Frasin, T. Al-Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat, 32 (2018), 3229-3236.
29. F. Yousef, S. Alroud, M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Boletín de la Sociedad Matemática Mexicana, (2019), 1-11.
30. A. Zireh, E. Analouei Adegani, S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016), 487-504.

AIMS Press
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

