ds=dt | uniform | nonuniform |
1 | 4.6993e-01 | 7.5345e-02 |
2 | 7.2988e-02 | 2.8702e-02 |
3 | 7.9305e-04 | 3.4180e-05 |
4 | 7.9579e-03 | 5.0769e-04 |
5 | 6.8798e-08 | 5.7736e-11 |
6 | 3.9454e-07 | 1.3449e-12 |
7 | 3.3420e-06 | 1.4611e-13 |
8 | 2.0505e-05 | 7.1919e-13 |
Barycentric rational collocation method (BRCM) for solving spatial fractional reaction-diffusion equation (SFRDE) is presented. New Gauss quadrature with weight function (sθ−τ)ξ−α is constructed to approximate fractional integral. Matrix equation of SFRDF is obtained from discrete SFRDE. With help of the error of barycentrix rational interpolation, convergence rate is obtained.
Citation: Jin Li. Barycentric rational collocation method for fractional reaction-diffusion equation[J]. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451
[1] | Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439 |
[2] | Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921 |
[3] | Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181 |
[4] | Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017 |
[5] | Jin Li . Linear barycentric rational interpolation method for solving Kuramoto-Sivashinsky equation. AIMS Mathematics, 2023, 8(7): 16494-16510. doi: 10.3934/math.2023843 |
[6] | Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229 |
[7] | Yumei Chen, Jiajie Zhang, Chao Pan . Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials. AIMS Mathematics, 2022, 7(8): 15612-15632. doi: 10.3934/math.2022855 |
[8] | Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846 |
[9] | Khalid K. Ali, Mohamed A. Abd El Salam, Mohamed S. Mohamed . Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 7759-7780. doi: 10.3934/math.2022436 |
[10] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
Barycentric rational collocation method (BRCM) for solving spatial fractional reaction-diffusion equation (SFRDE) is presented. New Gauss quadrature with weight function (sθ−τ)ξ−α is constructed to approximate fractional integral. Matrix equation of SFRDF is obtained from discrete SFRDE. With help of the error of barycentrix rational interpolation, convergence rate is obtained.
Consider the spatial fractional reaction-diffusion equation (SFRDE)
∂u∂t−DC0Dαsu(s,t)=f(s,t),(s,t)∈(a,b)×(0,T), | (1.1) |
u(s,0)=ϕ(s),s∈(a,b), | (1.2) |
where α∈(1,2) and
DC0Dαsu(s,t)={1Γ(ξ−α)∫s0∂ξu(τ,t)∂τξdτ(s−τ)α+1−ξ,n−1≤ξ≤n,u(n)(s0),n∈N, | (1.3) |
where Γ(α)=∫∞0xα−1e−xdx,x∈(0,∞) is Γ function, see [1].
Reaction-diffusion equation (RDE) as
∂u∂t−∂2u∂s2=f(s,t),(s,t)∈(a,b)×(0,T), | (1.4) |
as a kind of important partial differential equation, originates from a wide range of diffusion phenomena, influent flow theory, biochemistry, engineering, brain activity detection[2] and other fields.
Systems of fractional differential equations are also used in the study of electric circuits. In reference [3], explicit solutions for several families of such systems, both homogeneous and inhomogeneous cases, both commensurate and incommensurate are presented. Multi-dimensional time-dependent spatial fractional convection-diffusion (SFCD) equations [4] based on the Riemann-Liouville (RL) derivative is studied by high-efficient accurate mesh-free scheme. Time fractional diffusion equation [5] with discontinuous coefficients is investigated by immersed finite element (IFE) method, stabilities and error estimates are obtained. In reference [6], the authors have developed novel numerical schemes for the Caputo fractional derivative with order α∈(1,2) by cubic interpolating polynomial and cubic Hermite interpolation. A space-time finite element method for the multi-term time-space fractional diffusion equation is proposed in reference [7], the existence, uniqueness and stability of numerical scheme are also discussed. Weak Galerkin finite element [8] method to solve multi-term time fractional diffusion equation is considered, the stability analysis for both semi-discrete and fully-discrete schemes are presented. Collocation approach [9] is developed and stability of this scheme is investigated.
Barycentrix interpolation collocation [10,11,12,13,14,15] have been developed rapidly. In the recent paper, heat conduction equation [16], integral-differential equation [17], biharmonic equation [18,19] and fractional differential equations [20] have been solved by linear barycentrix rational collocation methods (LBRCM). In the paper [21,22,23,24], barycentric interpolation collocation method for nonlinear parabolic partial differential equations [25], incompressible plane elastic problems and plane elastic problems [26] and so on are presented.
In this paper, SFRDE is considered by linear barycentrix interpolation collocation methods. The fractional term is calculated by fractional integration which the singular part is changed to Riemman integral under the condition that the density function have one order more regularity. Different from the classical Gauss quadrature, new Gauss quadrature with weight function (sθ−τ)ξ−α is constructed which have high accuracy. Then matrix equation of SFRDF is obtained from discrete SFRDE and convergence rate is proposed.
Matrix equation of SFRDE is given in this part. The domain [a,b]×[0,T] is divided into
(si,tj),i=0,1,⋯, m,j=0,1,⋯,n, |
which can be chosen as equidistant nodes or Chebyshev nodes [27]. For equidistant meshes, we have hs=b−am,ht=Tn.
The barycentric interpolation function is given by
u(s,t):=m∑i=0n∑j=0Ri(s)Rj(t)uij, | (2.1) |
where uij=u(si,tj) and
Ri(s)=wis−sim∑k=0wks−sk, Rj(t)=λjt−tjn∑k=0λkt−tk, | (2.2) |
is basis function [28]. For different weight function wi and λj, there are different kind of barycentric interpolation, such as barycentric Lagrange interpolation (BLI) and barycentric rational interpolation (BRI) [21] and so on.
The wi denoted as weight function of BLI is defined as
wi=1m∏j=0,j≠isi−sj, λk=1l∏j=0,j≠ktk−tj, | (2.3) |
λj of BRI is defined as
wi=∑r1∈Ji(−1)r1r1+ds∏k=r1,r1≠i1si−sk, Ji={r1:i−ds≤r1≤i},λk=∑r2∈Jk(−1)r3r2+dt∏i=r2,r2≠k1tk−ti, Jk={r2:k−dt≤r2≤k}, | (2.4) |
where r1∈{0,1,⋯,m−ds},r2∈{0,1,⋯,n−dt}, the parameters ds,dt are integers and 0≤ds≤m,0≤dt≤n.
As there are singularity in Eq (1.3), the numerical methods can not get high accuracy, so we change (1.3) by fractional integration to overcome the difficulty singularity. We get
DC0Dαsu(s,t)=1Γ(ξ−α)∫x0∂ξu(τ,t)∂τξdτ(s−τ)α+1−ξ=1Γ(ξ−α)(ξ−α)[∂ξu(0,t)∂sξsξ−α+∫s0∂ξ+1u(τ,t)∂τξ+1dτ(s−τ)α−ξ]=Γξα[∂ξu(0,t)∂sξsξ−α+∫s0∂ξ+1u(τ,t)∂τξ+1dτ(s−τ)α−ξ], | (2.5) |
where
Γξα=1Γ(ξ−α)(ξ−α). |
Combining (2.5) and (1.1), we have
∂u∂t−Γξα[∂ξu(0,t)∂sξsξ−α+∫s0∂ξ+1u(τ,t)∂τξ+1dτ(s−τ)α−ξ]=f(s,t). | (2.6) |
Combining Eqs (2.1) and (2.6), then we get
m∑i=0n∑j=0[R′j(t)Ri(s)]uij−Γξαm∑i=0n∑j=0[Rj(t)R(ξ)i(0)sξ−α]uij−−Γξαm∑i=0n∑j=0[Rj(t)∫s0R(ξ+1)i(τ)(s−τ)α−ξdτ]uij=f(s,t), | (2.7) |
where
Rk(τ)=λkτ−τkn∑k=0λkτ−τk, |
and
{R′i(τ)=Ri(τ)[−1τ−τk+l∑s=0λk(τ−τk)2l∑s=0λkτ−τk],⋮R(ξ+1)i(τ)=[R(ξ)i(τ)]′,ξ∈N+. |
Let s=sμ,t=tθ, we get
m∑i=0n∑j=0[R′j(tθ)Ri(sμ)]uij−Γξαm∑i=0n∑j=0[Rj(tθ)R(ξ)i(0)sξ−αμ]uij−Γξαm∑i=0n∑j=0[Rj(tθ)∫sμ0R(ξ+1)i(τ)(sμ−τ)α−ξdτ]uij=f(sμ,tθ), | (2.8) |
where μ=0,1,⋯, m, θ=0,1,⋯,n.
The integral term of (2.8) can be written as
∫sμ0R(ξ+1)i(τ)(sμ−τ)ξ−αdτ=Qi(sμ)=Qiμ, | (2.9) |
then we get
m∑i=0n∑j=0[R′j(tθ)Ri(sμ)]uij−Γξαm∑i=0n∑j=0[Rj(tθ)R(ξ)i(0)sξ−αμ+Rj(tθ)Qi(sμ)]uij=f(sμ,tθ), | (2.10) |
noting the notation,
Ri(sμ)=δiμ, R′j(tθ)=M(01)jθ, Rj(tθ)=δjθ, R(ξ)i(0)=M(ξ0)iμ, |
where M(01)jθ,M(ξ0)iμ is the first order derivative of barycentrix matrix related with t and s [20].
The integral (2.9) is calculated by
Qiμ=Qi(sμ)=∫sμ0R(ξ+1)i(τ)(sμ−τ)ξ−αdτ:=g∑i=1R(ξ+1)i(τθ,αi)Gθ,αi, | (2.11) |
where Gθ,αi is Gauss weight and τθ,αi is Gauss points with weights (sμ−τ)ξ−α [20].
Equation systems (2.10) can be written as
[Im+1⊗M(01)−Γξα(Tξ,α(In+1⊗M(ξ0)1)+In+1⊗Q)][u00⋮u0nu10⋮u1num0⋮umn]=[f00⋮f0nf10⋮fnnfm0⋮fmn], | (2.12) |
Im+1 and In+1 are identity matrices, ⊗ is Kronecker product (see [21]),
M(01)=[M(01)ij]n+1,n+1, M(ξ0)=[M(ξ0)ij]n+1,n+1, Q=[Qij]m+1,m+1, |
and
Tξ,α=diag(sξ−αμ). |
Then Eq (2.12) can be noted as
[Im+1⊗M(01)−Γξα(Tξ,α(In+1⊗M(ξ0)1)+In+1⊗Q)]U=F, | (2.13) |
and
LU=F, | (2.14) |
with
L=Im+1⊗M(01)−Γξα(Tξ,α(In+1⊗M(ξ0)1)+In+1⊗Q), |
U=[u00⋯u0n,u10⋯u1n,um0⋯umn]T, |
and
F=[f00⋯f0n,f10⋯f1n,fm0⋯fmn]T. |
The initial and boundary condition can be dealt with the additional methods or replacement methods [21].
In this part, we present the proof convergence rate of LBRCM for SFRDE. Firstly, we define the error function
e(s)=u(s)−pn(s)=(s−si)⋯(s−si+d)u[si,si+1,…,si+d,s], | (3.1) |
and
e(s)=n−d∑i=0λi(s)(u(s)−pi(s))n−d∑i=0λi(s)=A(s)B(s)=O(hd+1), | (3.2) |
whereh=(b−a)/m,
pn(s)=n∑k=0λis−siuin∑k=0λks−sk, |
and
A(s):=n−d∑i=0(−1)iu[xi,…,si+d,s], |
B(s):=n−d∑i=0λi(s),λi, |
is defined as (2.3).
In the following, C denotes positive constant different places maybe its value is different.
Lemma 1. [10] For e(s) defined as (3.1), there holds
|e(k)(s)|≤Chd+1−k, u∈Cd+k+2[a,b], k=0,1,⋯. | (3.3) |
For the SFRDE, we can get the error function as rational interpolation function of u(s,t) is defined as rmn(s,t)
rmn(s,t)=m+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj)ui,jm+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj), | (3.4) |
where
wi,j=(−1)i−ds+j−dt∑k1∈Jik1+ds∏h1=k1,h1≠j1|si−sh1|∑k2∈Jik2+dt∏h2=k2,h2≠j1|tj−th2|. | (3.5) |
We define u(s,t) to be
e(s,t):=u(s,t)−rmn(s,t)=(s−si)⋯(s−si+ds)u[si,si+1,…,si+d1,s]+(t−tj)⋯(t−tj+dt)u[tj,tj+1,…,tj+d2,t]. | (3.6) |
See [28].
With similar analysis of Lemma 1, we have
Lemma 2. For e(s,t) defined as (3.6) and ϕ(s,t)∈Cds+k1+2[a,b]×Cdt+k2+2[0,T], then we have
|e(k1,k2)(s,t)|≤C(hds−k1+1s+hdt−k2+1t), | (3.7) |
where k1,k2=0,1,⋯.
Combining (2.8) and (1.1), we have
Le(s,t):=et(s,t)−Γ(ξ)es(0,t)−Γ(ξ)∫s0eτττ(τ,t)(s−τ)α−ξdτ−Rf(s,t), | (3.8) |
where
Rf(s,t)=f(s,t)−f(si, tj), i,j=0,1,2,⋯,n. |
Let u(s,t) to be the solution of (1.1) and umn(s,t) is the numerical solution, then we have
Lumn(si,tj)=f(si,tj), i,j=0,1,2,⋯,m,n, |
and
limm→∞n→∞un(si,tj)=u(s,t). |
We get the following theorem.
Theorem 1. Let
umn(s,t):Lumn(si,tj)=f(si,tj), u(s,t)∈C3[a,b]×[0,T], |
and suppose L be the invertible operator, we have
|umn(si,tj)−u(s,t)|≤C(hds−1s+hdtt). |
Proof. Combining the Lemma 1 and Eq (3.8), we have
|Le(s,t)|=|et(s,t)−Γ(ξ)ess(0,t)−Γ(ξ)∫s0eτττ(τ,t)(s−τ)α−ξdτ−Rf(s,t)|≤|et(s,t)|+|Γ(ξ)ess(0,t)|+|Γ(ξ)∫s0eτττ(τ,t)(s−τ)α−ξdτ|+|Rf(s,t)|≤C(hds+1s+hdtt)+C(hds−1s+hdt+1t)+C(hds−1s+hdt+1t)≤C(hds−1s+hdtt). | (3.9) |
As L is invertible operator. Then we have
|umn(si,tj)−u(s,t)|≤C(hds−1s+hdtt). |
The proof is completed.
Example is presented to valid our theorem.
Example 1. Consider the SFRDE
∂u∂t−DC0Dαsu(s,t)=f(s,t),(s,t)∈(0,1)×(0,T), | (4.1) |
u(s,0)=s3(1−s)2,s∈(0,1), | (4.2) |
u(s,t)=0,(s,t)∈R∖(0,1)×(0,T), | (4.3) |
and source term is
f(s,t)=−e−t(s3(1−x)2+6Γ(2)Γ(4−α)x3−α−24Γ(3)Γ(5−α)x4−α+20Γ(4)Γ(6−α)x5−α). |
Its exact solution
u(s,t)=e−ts3(1−s)2. |
In Table 1, for different ds=dt=1,2,⋯,8 with m=n=12,α=1.5, errors of BRCM with uniform and non uniform partition are presented, we can take the value ds=dt≥n2 to get the high accuracy.
ds=dt | uniform | nonuniform |
1 | 4.6993e-01 | 7.5345e-02 |
2 | 7.2988e-02 | 2.8702e-02 |
3 | 7.9305e-04 | 3.4180e-05 |
4 | 7.9579e-03 | 5.0769e-04 |
5 | 6.8798e-08 | 5.7736e-11 |
6 | 3.9454e-07 | 1.3449e-12 |
7 | 3.3420e-06 | 1.4611e-13 |
8 | 2.0505e-05 | 7.1919e-13 |
In Table 2, Lagrange barycentrix collocation method (LBCM) and RBCM are taken, errors show that accuracy of LBCM is higher than RBCM with m=n=12. For RBCM, we take m=n=12 and ds=dt=7. In Table 3, errors of BRCM with uniform and non uniform partition for t are presented with m=n=12,α=1.1. From Table 3, the accuracy of LBCM is higher than RBCM.
α | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 |
LBCM | 9.5138e-12 | 2.4257e-12 | 1.6542e-12 | 6.4369e-13 | 9.5138e-12 |
RBCM | 7.0692e-10 | 1.4440e-10 | 2.0669e-10 | 1.0278e-10 | 6.9905e-12 |
uniform partition | nonuniform partition | |||
t | LBCM | RBCM | RBCM | LBCM |
0.2 | 8.1691e-13 | 1.7989e-10 | 6.9215e-15 | 6.8522e-16 |
0.5 | 1.7290e-13 | 1.5966e-10 | 4.3611e-15 | 3.0786e-16 |
1 | 6.9905e-12 | 1.9534e-10 | 7.4393e-13 | 4.5667e-16 |
2 | 1.0755e-12 | 9.5327e-10 | 9.7622e-11 | 5.6413e-14 |
5 | 1.4066e-09 | 7.2354e-08 | 2.5801e-08 | 3.1917e-10 |
10 | 4.4450e-07 | 3.0357e-06 | 9.6720e-07 | 8.0330e-08 |
In Tables 4–7, errors of equidistant nodes for fractional reaction-diffusion equation with α=1.8,α=1.1 by LBRCM are presented respectively. As our numerical scheme, there are no influence of fractional differential integral. In Tables 4 and 5, for spatial variable, the convergence rate can reach to O(hdss). In Tables 6 and 7, for time variable, the convergence rate also can reach O(hdtt).
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 1.0675e-02 | 3.3277e-03 | 2.2951e-10 | |||
12 | 4.6326e-03 | 2.0588 | 8.6592e-04 | 3.3202 | 3.9579e-11 | 4.3349 |
16 | 2.5221e-03 | 2.1135 | 3.4191e-04 | 3.2301 | 4.1461e-09 | - |
20 | 1.5765e-03 | 2.1058 | 1.6294e-04 | 3.3215 | 3.1576e-05 | - |
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 1.0675e-02 | 3.3277e-03 | 2.2951e-10 | |||
12 | 4.6326e-03 | 2.0588 | 8.6592e-04 | 3.3202 | 3.9579e-11 | 4.3349 |
16 | 2.5221e-03 | 2.1135 | 3.4191e-04 | 3.2301 | 4.1461e-09 | - |
20 | 1.5765e-03 | 2.1058 | 1.6294e-04 | 3.3215 | 3.1576e-05 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 3.5786e-06 | 1.1346e-06 | 2.8635e-08 | |||
12 | 1.8147e-06 | 1.6747 | 3.6189e-07 | 2.8182 | 7.6203e-09 | 3.2649 |
16 | 1.0961e-06 | 1.7526 | 1.6175e-07 | 2.7993 | 9.4889e-09 | - |
20 | 1.7494e-06 | - | 2.1987e-06 | - | 3.0205e-06 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 9.2124e-06 | 3.0304e-06 | 1.0333e-07 | |||
12 | 4.4886e-06 | 1.7733 | 9.9503e-07 | 2.7467 | 2.2176e-08 | 3.7954 |
16 | 2.2164e-06 | 2.4528 | 3.4298e-07 | 3.7024 | 2.5502e-08 | - |
20 | 2.4477e-06 | - | 3.0062e-06 | - | 4.4543e-06 | - |
In Tables 8–11, errors of Chebychev nodes for SFRDE with α=1.8,α=1.1 by LBRCM are presented respectively. The convergence rate of LBRCM is similar as the case of equidistant nodes.
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 2.6415e-03 | 6.6688e-04 | 5.8189e-11 | |||
12 | 4.5016e-04 | 4.3641 | 5.2184e-05 | 6.2837 | 3.1597e-12 | 7.1849 |
16 | 1.3558e-04 | 4.1714 | 8.5782e-06 | 6.2762 | 6.6963e-13 | 5.3931 |
20 | 5.2841e-05 | 4.2227 | 2.1155e-06 | 6.2737 | 9.7490e-14 | 8.6356 |
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 3.4071e-03 | 9.5228e-04 | 1.5986e-10 | |||
12 | 7.3160e-04 | 3.7941 | 8.2882e-05 | 6.0213 | 4.4480e-12 | 8.8339 |
16 | 2.3489e-04 | 3.9492 | 1.4075e-05 | 6.1631 | 8.3639e-13 | 5.8089 |
20 | 1.2705e-04 | 2.7540 | 3.9952e-06 | 5.6435 | 2.0594e-12 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 1.7801e-06 | 3.4045e-07 | 6.8588e-09 | |||
12 | 6.0764e-07 | 2.6509 | 9.2108e-08 | 3.2242 | 1.6211e-09 | 3.5575 |
16 | 2.5934e-07 | 2.9596 | 2.8259e-08 | 4.1072 | 4.2633e-10 | 4.6428 |
20 | 1.3001e-07 | 3.0946 | 1.1082e-08 | 4.1950 | 1.3837e-10 | 5.0427 |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 3.8320e-06 | 7.3600e-07 | 1.3248e-08 | |||
12 | 9.6554e-07 | 3.3997 | 1.3592e-07 | 4.1660 | 2.4590e-09 | 4.1534 |
16 | 3.3325e-07 | 3.6978 | 3.4298e-08 | 4.7864 | 5.0191e-10 | 5.5238 |
20 | 1.5073e-07 | 3.5556 | 1.2913e-08 | 4.3777 | 1.6029e-10 | 5.1154 |
From Figures 1–5, errors of LBCM with m=n=12,α=1.1,1.3,1.5,1.7,1.9 are proposed.
Figures 6–10, errors of RBCM with m=n=12,ds=dt=7,α=1.1,1.3,1.5,1.7,1.9 are proposed. Compared with LBCM and RBCM, the error accuracy can reach 10−11 by choosing ds,dt approximately.
One dimensional SFRDE is studied by RBCM, in order to get the higher accuracy, the fractional term is transformed into Riemman integral by fractional integration. The time variable and spatial variable are solved by RBCM at the same time, matrix equation of SFRDE can be obtained which is same as the SFRDE. While for the two dimensional SFRDE and non-linear SFRDE, the LRBCM can also be used to get the corresponding matrix equation.
The work of Jin Li was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).
The authors would also like to thank the referees for their constructive comments and remarks which helped improve the quality of the paper.
The author declare that they have no conflict of interest.
[1] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, US Government Printing Office, 1948 |
[2] | F. Dell'Accio, F. Di Tommaso, G. Ala, E. Francomano, Electric scalar potential estimations for non-invasive brain activity detection through multinode Shepard method, 2022 IEEE 21st Mediterranean Electrotechnical Conference, 2022. https://doi.org/10.1109/MELECON53508.2022.9842881 |
[3] |
I. T. Huseynov, A. Ahmadova, A. Fernandez, N. I. Mahmudov, Explicit analytical solutions of incommensurate fractional differential equation systems, Appl. Math. Comput., 390 (2021), 125590. https://doi.10.1016/j.amc.2020.125590 doi: 10.1016/j.amc.2020.125590
![]() |
[4] | T. Jiang, X. Wang, J. Ren, J. Huang, J. Yuan, A high-efficient accurate coupled mesh-free scheme for 2D/3D space-fractional convection-diffusion/Burgersi problems, Comput. Math. Appl., 2022, https://doi.org/10.1016/j.camwa.2022.10.020 |
[5] |
Y. Chen, Q. Li, H. Yi, Y. Huang, Immersed finite element method for time fractional diffusion problems with discontinuous coefficients, Comput. Math. Appl., 128 (2022), 121–129 https://doi.10.1016/j.camwa.2022.09.023 doi: 10.1016/j.camwa.2022.09.023
![]() |
[6] |
N. Srivastava, V. K. Singh, L3 approximation of Caputo derivative and its application to time-fractional wave equation, Math. Comput. Simul., 205 (2023), 532–557 https://doi.10.1016/j.matcom.2022.10.003 doi: 10.1016/j.matcom.2022.10.003
![]() |
[7] |
W. Bu, S. Shu, X. Yue, A. Xiao, W. Zeng, Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain, Comput. Math. Appl., 78 (2019), 1367–1379 https://doi.10.1016/j.camwa.2018.11.033 doi: 10.1016/j.camwa.2018.11.033
![]() |
[8] |
S. Toprakseven, A weak Galerkin finite element method on temporal graded meshes for the multi-term time fractional diffusion equations, Comput. Math. Appl., 128 (2022), 108–120 https://doi.10.1016/j.camwa.2022.10.012 doi: 10.1016/j.camwa.2022.10.012
![]() |
[9] |
A. Ghafoor, N. Khan, M. Hussain, R. Ullah, A hybrid collocation method for the computational study of multi-term time fractional partial differential equations, Comput. Math. Appl., 128 (2022), 130–144 https://doi.10.1016/j.camwa.2022.10.005 doi: 10.1016/j.camwa.2022.10.005
![]() |
[10] | P. Berrut, M. S. Floater, G. Klein, Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math., 61, (2011), 989–1000. https://doi.10.1016/j.apnum.2011.05.001 |
[11] | J. P. Berrut, S. A Hosseini, G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36, (2014), 105–123. https://doi.10.1137/120904020 |
[12] |
M. S. Floater, K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y
![]() |
[13] |
G. Klein, J. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156
![]() |
[14] |
G. Klein, J. Berrut, Linear barycentric rational quadrature, BIT Numer. Math., 52 (2012), 407–424. https://doi.org/10.1007/s10543-011-0357-x doi: 10.1007/s10543-011-0357-x
![]() |
[15] |
R. Baltensperger, J. P. Berrut, The linear rational collocation method, J. Comput. Appl. Math., 134 (2001), 243–258. https://doi.org/10.1016/S0377-0427(00)00552-5 doi: 10.1016/S0377-0427(00)00552-5
![]() |
[16] |
J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equations, 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
![]() |
[17] |
J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020), 92. https://doi.org/10.1007/s40314-020-1114-z doi: 10.1007/s40314-020-1114-z
![]() |
[18] |
J. Li, Y. Cheng, Barycentric rational method for solving biharmonic equation by depression of order, Numer. Methods Partial Differ. Equations, 37 (2021), 1993–2007. https://doi.org/10.1002/num.22638 doi: 10.1002/num.22638
![]() |
[19] |
J. Li, Linear barycentric rational collocation method for solving biharmonic equation, Demonstr. Math., 55 (2022), 587–603. https://doi.org/10.1515/dema-2022-0151 doi: 10.1515/dema-2022-0151
![]() |
[20] |
J. Li, X. Su, K. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005
![]() |
[21] | Z. Q. Wang, S. P. Li, Barycentric interpolation collocation method for nonlinear problems, National Defense Industry Press, 2015. |
[22] | Z. Q. Wang, Z. K. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 195–201. |
[23] |
Z. Wang, L. Zhang, Z. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 304–309. https://doi.org/10.11776/cjam.35.02.D002 doi: 10.11776/cjam.35.02.D002
![]() |
[24] |
F. Dell'Accio, F. Di Tommaso, O. Nouisser, N. Siar, Solving Poisson equation with Dirichlet conditions through multinode shepard operators, Comput. Math. Appl., 98 (2021), 254–260. https://doi.org/10.1016/j.camwa.2021.07.021 doi: 10.1016/j.camwa.2021.07.021
![]() |
[25] |
W. H. Luo, T. Z. Huang, X. M. Gu, Y. Liu, Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl. Math. Lett., 68 (2017), 13–19. https://doi.org/10.1016/j.aml.2016.12.011 doi: 10.1016/j.aml.2016.12.011
![]() |
[26] |
F. Delli'Accio, F. Di Tommaso, Rate of convergence of multinode shepard operators, Dolomit. Res. Notes Approx., 12 (2019), 1–6. https://doi.org/10.14658/pupj-drna-2019-1-1 doi: 10.14658/pupj-drna-2019-1-1
![]() |
[27] | T. J. Rivlin, Chebyshev polynomials, Courier Dover Publications, 2020. |
[28] |
K. Jing, N. Kang, A convergent family of bivariate Floater-Hormann rational interpolants, Comput. Methods Funct. Theory, 21 (2021), 271–296. https://doi.org/10.1007/s40315-020-00334-9 doi: 10.1007/s40315-020-00334-9
![]() |
1. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving KPP equation, 2023, 31, 2688-1594, 3014, 10.3934/era.2023152 | |
2. | Jin Li, Kaiyan Zhao, Xiaoning Su, Selma Gulyaz, Barycentric Interpolation Collocation Method for Solving Fractional Linear Fredholm-Volterra Integro-Differential Equation, 2023, 2023, 2314-8888, 1, 10.1155/2023/7918713 | |
3. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving fractional cable equation, 2023, 31, 2688-1594, 3649, 10.3934/era.2023185 | |
4. | Yan Chen, Xindong Zhang, Xian-Ming Gu, A High Accuracy Numerical Method Based on Interpolation Technique for Time-Fractional Advection-Diffusion Equations, 2024, 2024, 2314-4785, 1, 10.1155/2024/2740720 | |
5. | Elsayed M. E. Zayed, Mahmoud El-Horbaty, Basel M. M. Saad, Ahmed H. Arnous, Yakup Yildirim, Novel solitary wave solutions for stochastic nonlinear reaction–diffusion equation with multiplicative noise, 2024, 112, 0924-090X, 20199, 10.1007/s11071-024-10085-0 | |
6. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation, 2023, 31, 2688-1594, 4034, 10.3934/era.2023205 | |
7. | Jin Li, Linear barycentric rational interpolation method for solving Kuramoto-Sivashinsky equation, 2023, 8, 2473-6988, 16494, 10.3934/math.2023843 | |
8. | Jin Li, Yongling Cheng, Spectral collocation method for convection-diffusion equation, 2024, 57, 2391-4661, 10.1515/dema-2023-0110 | |
9. | Ahmed Alsaedi, Manal Alnahdi, Bashir Ahmad, Sotiris K. Ntouyas, On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions, 2023, 8, 2473-6988, 17981, 10.3934/math.2023914 | |
10. | Shuiqiang Zhang, Haiyang Gong, Zikang Xu, Yuqing Zheng, Yongli Wang, Lin Chang, A locking-free and accurate collocation method for nearly incompressible and incompressible plane elasticity, 2024, 162, 09557997, 268, 10.1016/j.enganabound.2024.02.003 | |
11. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106 | |
12. | Qays Atshan Almusawi, Esmaeil Najafi, Birendra Nath Mandal, Quasilinearization‐Collocation Method for the Numerical Solution of Nonlinear Fractional Volterra Integro‐Differential Equations With Logarithmic Weakly Singular Kernel, 2024, 2024, 0161-1712, 10.1155/2024/8218632 | |
13. | Shuang Wang, FanFan Chen, Chunlian Liu, The existence of periodic solutions for nonconservative superlinear second order ODEs: a rotation number and spiral analysis approach, 2025, 33, 2688-1594, 50, 10.3934/era.2025003 | |
14. | Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu, Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics, 2025, 10, 2473-6988, 1859, 10.3934/math.2025086 | |
15. | Xinying Qu, Jiawei Lin, A barycentric rational collocation method for higher-order equations related to time, 2025, 2964, 1742-6588, 012055, 10.1088/1742-6596/2964/1/012055 |
ds=dt | uniform | nonuniform |
1 | 4.6993e-01 | 7.5345e-02 |
2 | 7.2988e-02 | 2.8702e-02 |
3 | 7.9305e-04 | 3.4180e-05 |
4 | 7.9579e-03 | 5.0769e-04 |
5 | 6.8798e-08 | 5.7736e-11 |
6 | 3.9454e-07 | 1.3449e-12 |
7 | 3.3420e-06 | 1.4611e-13 |
8 | 2.0505e-05 | 7.1919e-13 |
α | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 |
LBCM | 9.5138e-12 | 2.4257e-12 | 1.6542e-12 | 6.4369e-13 | 9.5138e-12 |
RBCM | 7.0692e-10 | 1.4440e-10 | 2.0669e-10 | 1.0278e-10 | 6.9905e-12 |
uniform partition | nonuniform partition | |||
t | LBCM | RBCM | RBCM | LBCM |
0.2 | 8.1691e-13 | 1.7989e-10 | 6.9215e-15 | 6.8522e-16 |
0.5 | 1.7290e-13 | 1.5966e-10 | 4.3611e-15 | 3.0786e-16 |
1 | 6.9905e-12 | 1.9534e-10 | 7.4393e-13 | 4.5667e-16 |
2 | 1.0755e-12 | 9.5327e-10 | 9.7622e-11 | 5.6413e-14 |
5 | 1.4066e-09 | 7.2354e-08 | 2.5801e-08 | 3.1917e-10 |
10 | 4.4450e-07 | 3.0357e-06 | 9.6720e-07 | 8.0330e-08 |
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 1.0675e-02 | 3.3277e-03 | 2.2951e-10 | |||
12 | 4.6326e-03 | 2.0588 | 8.6592e-04 | 3.3202 | 3.9579e-11 | 4.3349 |
16 | 2.5221e-03 | 2.1135 | 3.4191e-04 | 3.2301 | 4.1461e-09 | - |
20 | 1.5765e-03 | 2.1058 | 1.6294e-04 | 3.3215 | 3.1576e-05 | - |
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 1.0675e-02 | 3.3277e-03 | 2.2951e-10 | |||
12 | 4.6326e-03 | 2.0588 | 8.6592e-04 | 3.3202 | 3.9579e-11 | 4.3349 |
16 | 2.5221e-03 | 2.1135 | 3.4191e-04 | 3.2301 | 4.1461e-09 | - |
20 | 1.5765e-03 | 2.1058 | 1.6294e-04 | 3.3215 | 3.1576e-05 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 3.5786e-06 | 1.1346e-06 | 2.8635e-08 | |||
12 | 1.8147e-06 | 1.6747 | 3.6189e-07 | 2.8182 | 7.6203e-09 | 3.2649 |
16 | 1.0961e-06 | 1.7526 | 1.6175e-07 | 2.7993 | 9.4889e-09 | - |
20 | 1.7494e-06 | - | 2.1987e-06 | - | 3.0205e-06 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 9.2124e-06 | 3.0304e-06 | 1.0333e-07 | |||
12 | 4.4886e-06 | 1.7733 | 9.9503e-07 | 2.7467 | 2.2176e-08 | 3.7954 |
16 | 2.2164e-06 | 2.4528 | 3.4298e-07 | 3.7024 | 2.5502e-08 | - |
20 | 2.4477e-06 | - | 3.0062e-06 | - | 4.4543e-06 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 2.6415e-03 | 6.6688e-04 | 5.8189e-11 | |||
12 | 4.5016e-04 | 4.3641 | 5.2184e-05 | 6.2837 | 3.1597e-12 | 7.1849 |
16 | 1.3558e-04 | 4.1714 | 8.5782e-06 | 6.2762 | 6.6963e-13 | 5.3931 |
20 | 5.2841e-05 | 4.2227 | 2.1155e-06 | 6.2737 | 9.7490e-14 | 8.6356 |
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 3.4071e-03 | 9.5228e-04 | 1.5986e-10 | |||
12 | 7.3160e-04 | 3.7941 | 8.2882e-05 | 6.0213 | 4.4480e-12 | 8.8339 |
16 | 2.3489e-04 | 3.9492 | 1.4075e-05 | 6.1631 | 8.3639e-13 | 5.8089 |
20 | 1.2705e-04 | 2.7540 | 3.9952e-06 | 5.6435 | 2.0594e-12 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 1.7801e-06 | 3.4045e-07 | 6.8588e-09 | |||
12 | 6.0764e-07 | 2.6509 | 9.2108e-08 | 3.2242 | 1.6211e-09 | 3.5575 |
16 | 2.5934e-07 | 2.9596 | 2.8259e-08 | 4.1072 | 4.2633e-10 | 4.6428 |
20 | 1.3001e-07 | 3.0946 | 1.1082e-08 | 4.1950 | 1.3837e-10 | 5.0427 |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 3.8320e-06 | 7.3600e-07 | 1.3248e-08 | |||
12 | 9.6554e-07 | 3.3997 | 1.3592e-07 | 4.1660 | 2.4590e-09 | 4.1534 |
16 | 3.3325e-07 | 3.6978 | 3.4298e-08 | 4.7864 | 5.0191e-10 | 5.5238 |
20 | 1.5073e-07 | 3.5556 | 1.2913e-08 | 4.3777 | 1.6029e-10 | 5.1154 |
ds=dt | uniform | nonuniform |
1 | 4.6993e-01 | 7.5345e-02 |
2 | 7.2988e-02 | 2.8702e-02 |
3 | 7.9305e-04 | 3.4180e-05 |
4 | 7.9579e-03 | 5.0769e-04 |
5 | 6.8798e-08 | 5.7736e-11 |
6 | 3.9454e-07 | 1.3449e-12 |
7 | 3.3420e-06 | 1.4611e-13 |
8 | 2.0505e-05 | 7.1919e-13 |
α | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 |
LBCM | 9.5138e-12 | 2.4257e-12 | 1.6542e-12 | 6.4369e-13 | 9.5138e-12 |
RBCM | 7.0692e-10 | 1.4440e-10 | 2.0669e-10 | 1.0278e-10 | 6.9905e-12 |
uniform partition | nonuniform partition | |||
t | LBCM | RBCM | RBCM | LBCM |
0.2 | 8.1691e-13 | 1.7989e-10 | 6.9215e-15 | 6.8522e-16 |
0.5 | 1.7290e-13 | 1.5966e-10 | 4.3611e-15 | 3.0786e-16 |
1 | 6.9905e-12 | 1.9534e-10 | 7.4393e-13 | 4.5667e-16 |
2 | 1.0755e-12 | 9.5327e-10 | 9.7622e-11 | 5.6413e-14 |
5 | 1.4066e-09 | 7.2354e-08 | 2.5801e-08 | 3.1917e-10 |
10 | 4.4450e-07 | 3.0357e-06 | 9.6720e-07 | 8.0330e-08 |
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 1.0675e-02 | 3.3277e-03 | 2.2951e-10 | |||
12 | 4.6326e-03 | 2.0588 | 8.6592e-04 | 3.3202 | 3.9579e-11 | 4.3349 |
16 | 2.5221e-03 | 2.1135 | 3.4191e-04 | 3.2301 | 4.1461e-09 | - |
20 | 1.5765e-03 | 2.1058 | 1.6294e-04 | 3.3215 | 3.1576e-05 | - |
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 1.0675e-02 | 3.3277e-03 | 2.2951e-10 | |||
12 | 4.6326e-03 | 2.0588 | 8.6592e-04 | 3.3202 | 3.9579e-11 | 4.3349 |
16 | 2.5221e-03 | 2.1135 | 3.4191e-04 | 3.2301 | 4.1461e-09 | - |
20 | 1.5765e-03 | 2.1058 | 1.6294e-04 | 3.3215 | 3.1576e-05 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 3.5786e-06 | 1.1346e-06 | 2.8635e-08 | |||
12 | 1.8147e-06 | 1.6747 | 3.6189e-07 | 2.8182 | 7.6203e-09 | 3.2649 |
16 | 1.0961e-06 | 1.7526 | 1.6175e-07 | 2.7993 | 9.4889e-09 | - |
20 | 1.7494e-06 | - | 2.1987e-06 | - | 3.0205e-06 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 9.2124e-06 | 3.0304e-06 | 1.0333e-07 | |||
12 | 4.4886e-06 | 1.7733 | 9.9503e-07 | 2.7467 | 2.2176e-08 | 3.7954 |
16 | 2.2164e-06 | 2.4528 | 3.4298e-07 | 3.7024 | 2.5502e-08 | - |
20 | 2.4477e-06 | - | 3.0062e-06 | - | 4.4543e-06 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 2.6415e-03 | 6.6688e-04 | 5.8189e-11 | |||
12 | 4.5016e-04 | 4.3641 | 5.2184e-05 | 6.2837 | 3.1597e-12 | 7.1849 |
16 | 1.3558e-04 | 4.1714 | 8.5782e-06 | 6.2762 | 6.6963e-13 | 5.3931 |
20 | 5.2841e-05 | 4.2227 | 2.1155e-06 | 6.2737 | 9.7490e-14 | 8.6356 |
m=n | ds=2 | ds=3 | ds=4 | |||
8 | 3.4071e-03 | 9.5228e-04 | 1.5986e-10 | |||
12 | 7.3160e-04 | 3.7941 | 8.2882e-05 | 6.0213 | 4.4480e-12 | 8.8339 |
16 | 2.3489e-04 | 3.9492 | 1.4075e-05 | 6.1631 | 8.3639e-13 | 5.8089 |
20 | 1.2705e-04 | 2.7540 | 3.9952e-06 | 5.6435 | 2.0594e-12 | - |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 1.7801e-06 | 3.4045e-07 | 6.8588e-09 | |||
12 | 6.0764e-07 | 2.6509 | 9.2108e-08 | 3.2242 | 1.6211e-09 | 3.5575 |
16 | 2.5934e-07 | 2.9596 | 2.8259e-08 | 4.1072 | 4.2633e-10 | 4.6428 |
20 | 1.3001e-07 | 3.0946 | 1.1082e-08 | 4.1950 | 1.3837e-10 | 5.0427 |
m=n | dt=2 | dt=3 | dt=4 | |||
8 | 3.8320e-06 | 7.3600e-07 | 1.3248e-08 | |||
12 | 9.6554e-07 | 3.3997 | 1.3592e-07 | 4.1660 | 2.4590e-09 | 4.1534 |
16 | 3.3325e-07 | 3.6978 | 3.4298e-08 | 4.7864 | 5.0191e-10 | 5.5238 |
20 | 1.5073e-07 | 3.5556 | 1.2913e-08 | 4.3777 | 1.6029e-10 | 5.1154 |