In this study, the suggested residual power series transform method is used to compute the numerical solution of the fractional-order nonlinear Gardner and Cahn-Hilliard equations and the result is discovered in a fast convergent series. The leverage and efficacy of the suggested technique are demonstrated by the test examples provided. The achieved results are proved graphically. The current method handles the series solution in a sizable admissible domain in a powerful way. It provides a simple means of modifying the solution's convergence zone. Results with graphs expressly demonstrate the effectiveness and abilities of the suggested method.
Citation: Naveed Iqbal, Mohammad Alshammari, Wajaree Weera. Numerical analysis of fractional-order nonlinear Gardner and Cahn-Hilliard equations[J]. AIMS Mathematics, 2023, 8(3): 5574-5587. doi: 10.3934/math.2023281
In this study, the suggested residual power series transform method is used to compute the numerical solution of the fractional-order nonlinear Gardner and Cahn-Hilliard equations and the result is discovered in a fast convergent series. The leverage and efficacy of the suggested technique are demonstrated by the test examples provided. The achieved results are proved graphically. The current method handles the series solution in a sizable admissible domain in a powerful way. It provides a simple means of modifying the solution's convergence zone. Results with graphs expressly demonstrate the effectiveness and abilities of the suggested method.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, 204 (2006). https://doi.org/10.1016/s0304-0208(06)80001-0 |
[2] | G. Jumarie, On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling, Cent. Eur. J. Phys., 11 (2013), 617–633. https://doi.org/ 10.2478/s11534-013-0256-7 doi: 10.2478/s11534-013-0256-7 |
[3] | I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. M. V. Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys., 228 (2009), 3137–3153. https://doi.org/ 10.1016/j.jcp.2009.01.014 doi: 10.1016/j.jcp.2009.01.014 |
[4] | T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Mathematics, 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693 |
[5] | M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Mathematics, 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385 |
[6] | A. S. Alshehry, M. Imran, R. Shah, W. Weera, Fractional-view analysis of Fokker-Planck equations by ZZ transform with Mittag-Leffler kernel, Symmetry, 14 (2022), 1513. https://doi.org/10.3390/sym14081513 doi: 10.3390/sym14081513 |
[7] | Z. H. Xie, X. A. Feng, X. J. Chen, Partial least trimmed squares regression, Chemometr. Intell. Lab. Syst., 221 (2022), 104486. https://doi.org/10.1016/j.chemolab.2021.104486. doi: 10.1016/j.chemolab.2021.104486 |
[8] | V. N. Kovalnogov, R. V. Fedorov, Y. A. Khakhalev, T. E. Simos, C. Tsitouras, A neural network technique for the derivation of Runge-Kutta pairs adjusted for scalar autonomous problems, Mathematics, 9 (2021), 1842. https://doi.org/10.3390/math9161842. doi: 10.3390/math9161842 |
[9] | L. J. Sun, J. Hou, C. J. Xing, Z. W. Fang, A robust Hammerstein-Wiener model identification method for highly nonlinear systems, Processes, 10 (2022), 2664. https://doi.org/10.3390/pr10122664. doi: 10.3390/pr10122664 |
[10] | T. Botmart, M. Naeem, R. Shah, N. Iqbal, Fractional view analysis of Emden-Fowler equations with the help of analytical method, Symmetry, 14 (2022), 2168. https://doi.org/ 10.3390/sym14102168 doi: 10.3390/sym14102168 |
[11] | A. A. M. Arafa, S. Z. Rida, M. Khalil, The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model, Appl. Math. Model., 37 (2013), 2189–2196. https://doi.org/10.1016/j.apm.2012.05.002 doi: 10.1016/j.apm.2012.05.002 |
[12] | A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/ 10.3390/sym14091944 doi: 10.3390/sym14091944 |
[13] | H. Yasmin, N. Iqbal, A comparative study of the fractional coupled burgers and Hirota-Satsuma KdV equations via analytical techniques, Symmetry, 14 (2022), 1364. https://doi.org/ 10.3390/sym14071364 doi: 10.3390/sym14071364 |
[14] | M. Javidi, A numerical solution of the generalized Burger's-Huxley equation by spectral collocation method, Appl. Math. Comput., 178 (2006), 338–344. https://doi.org/10.1016/j.amc.2005.11.051 doi: 10.1016/j.amc.2005.11.051 |
[15] | M. Alshammari, N. Iqbal, W. W. Mohammed, T. Botmart, The solution of fractional-order system of KdV equations with exponential-decay kernel, Results Phys., 38 (2022), 105615. https://doi.org/ 10.1016/j.rinp.2022.105615 doi: 10.1016/j.rinp.2022.105615 |
[16] | S. Li, Efficient algorithms for scheduling equal-length jobs with processing set restrictions on uniform parallel batch machines, Math. Bios. Eng., 19(11), (2022), 10731–10740. https://doi.org/10.3934/mbe.2022502. doi: 10.3934/mbe.2022502 |
[17] | M. Sari, G. Gurarslan, Numerical solutions of the generalized Burgers-Huxley equation by a differential quadrature method, Math. Probl. Eng., 2009 (2009), 370765. http://doi.org/10.1155/2009/370765 doi: 10.1155/2009/370765 |
[18] | A. M. Wazwaz, Solitons and singular solitons for the Gardner-KP equation, Appl. Math. Comput., 204 (2008), 162–169. https://doi.org/10.1016/j.amc.2008.06.011 doi: 10.1016/j.amc.2008.06.011 |
[19] | L. Wang, G. Z. Liu, J. Xue, K. Wong, Channel prediction using ordinary differential equations for MIMO systems, IEEE Trans. Veh. Technol., 2022, 1–9. https://doi.org/10.1109/TVT.2022.3211661 doi: 10.1109/TVT.2022.3211661 |
[20] | F. W. Meng, A. P. Pang, X. F. Dong, C. Han, X. P. Sha, $H_\infty$ optimal performance design of an unstable plant under Bode integral constraint, Complexity, 20018 (2018), 4942906. https://doi.org/ 10.1155/2018/4942906. doi: 10.1155/2018/4942906 |
[21] | F. W. Meng, D. Wang, P. H. Yang, G. Z. Xie, Application of sum of squares method in nonlinear $H_\infty$ control for satellite attitude maneuvers, Complexity, 2019 (2019), 5124108. https://doi.org/10.1155/2019/5124108. doi: 10.1155/2019/5124108 |
[22] | G. H. F. Gardner, L. W. Gardner, A. R. Gregory, Formation velocity and density; the diagnostic basics for stratigraphic traps, Geophysics, 39 (1974), 770–780. https://doi.org/10.1190/1.1440465 doi: 10.1190/1.1440465 |
[23] | Z. T. Fu, S. D. Liu, S. K. Liu, New kinds of solutions to Gardner equation, Chaos Solitons Fractals, 20 (2004), 301–309. https://doi.org/10.1016/S0960-0779(03)00383-7 doi: 10.1016/S0960-0779(03)00383-7 |
[24] | G. Q. Xu, Z. B. Li, Y. P. Liu, Exact solutions to a large class of nonlinear evolution equations, Chinese J. Phys., 41 (2003), 232–241. |
[25] | C. K. Kuo, New solitary solutions of the Gardner equation and Whitham-Broer-Kaup equations by the modified simplest equation method, Optik, 147 (2017), 128–135. https://doi.org/10.1016/j.ijleo.2017.08.048 doi: 10.1016/j.ijleo.2017.08.048 |
[26] | A. Arafa, G. Elmahdy, Application of residual power series method to fractional coupled physical equations arising in fluids flow, Int. J. Differ. Equ., 2018 (2018), 7692849. https://doi.org/10.1155/2018/7692849 doi: 10.1155/2018/7692849 |
[27] | J. W. Cahn, J. E. Hilliard, Free energy of a non-uniform systerm I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[28] | M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178–192. https://doi.org/ 10.1016/0167-2789(95)00173-5 doi: 10.1016/0167-2789(95)00173-5 |
[29] | S. M. Choo, S. K. Chung, Y. J. Lee, A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient, Appl. Numer. Math., 51 (2004), 207–219. https://doi.org/10.1016/j.apnum.2004.02.006 doi: 10.1016/j.apnum.2004.02.006 |
[30] | A. Bouhassoun, M. H. Cherif. Homotopy perturbation method for solving the fractional Cahn-Hilliard equation, J. Interdiscip. Math., 18 (2015), 513–524. https://doi.org/10.1080/10288457.2013.867627. doi: 10.1080/10288457.2013.867627 |
[31] | Y. Pandir, H. H. Duzgun, New exact solutions of time fractional gardner equation by using new version of F-expansion method, Commun. Theor. Phys., 67 (2017). https://doi.org/10.1088/0253-6102/67/1/9. doi: 10.1088/0253-6102/67/1/9 |
[32] | O. S. Iyiola, O. G. Olayinka, Analytical solutions of time-fractional models for homogeneous Gardner equation and nonhomogeneous differential equations, Ain Shams Eng. J., 5 (2014), 999–1004. https://doi.org/10.1016/j.asej.2014.03.014. doi: 10.1016/j.asej.2014.03.014 |
[33] | J. Ahmad, S. T. Mohyud-Din, An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics, Plos One, 9 (2014), 109127. https://doi.org/10.1371/journal.pone.0109127 doi: 10.1371/journal.pone.0109127 |
[34] | S. T. Demiray, Y. Pandir, H. Bulut, Generalized Kudryashov method for time-fractional differential equations, Abstr. Appl. Anal., 2014 (2014), 901540. https://doi.org/10.1155/2014/901540 doi: 10.1155/2014/901540 |
[35] | H. Jafari, H. Tajadodi, N. Kadkhoda, D. Baleanu, Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations, Abstr. Appl. Anal., 5 (2013), 587179. https://doi.org/10.1155/2013/587179 doi: 10.1155/2013/587179 |
[36] | M. S. Mohamed, K. S. Mekheimer, Analytical approximate solution for nonlinear space-time fractional Cahn-Hilliard equation, Int. Electron. J. Pure Appl. Math., 7 (2014). https://doi.org/10.12732/iejpam.v7i4.1 doi: 10.12732/iejpam.v7i4.1 |
[37] | J. Ahmad, S. T. Mohyud-Din, An efficient algorithm for nonlinear fractional partial differential equations, Proc. Pakistan Acad. Sci., 52 (2015), 381–388. |
[38] | D. Baleanu, Y. Ugurlu, M. Inc, B. Kilic, Improved (G/G)-expansion method for the time-fractional biological population model and Cahn-Hilliard equation, J. Comput. Nonlinear Dyn., 10 (2015), 051016. https://doi.org/10.1115/1.4029254 doi: 10.1115/1.4029254 |
[39] | O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. http://doi.org/10.5373/jaram.1447.051912 doi: 10.5373/jaram.1447.051912 |
[40] | O. A. Arqub, A. El-Ajou, S. Momani, Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations, J. Comput. Phys., 293 (2015), 385–399. https://doi.org/10.1016/j.jcp.2014.09.034 doi: 10.1016/j.jcp.2014.09.034 |
[41] | O. A. Arqub, A. El-Ajou, A. S. Bataineh, I. Hashim, A representation of the exact solution of generalized Lane-Emden equations using a new analytical method, Abstr. Appl. Anal., 10 (2013), 378593. https://doi.org/10.1155/2013/378593 doi: 10.1155/2013/378593 |
[42] | O. A. Arqub, Z. Abo-Hammour, R. Al-Badarneh, S. Momani, A reliable analytical method for solving higher-order initial value problems, Discrete Dyn. Nat. Soc., 2013 (2013), 673829. https://doi.org/10.1155/2013/673829 doi: 10.1155/2013/673829 |
[43] | A. El-Ajou, O. A. Arqub, S. M. Momani, D. Baleanu, A. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257 (2015), 119–133. http://doi.org/10.1016/j.amc.2014.12.121 doi: 10.1016/j.amc.2014.12.121 |
[44] | S. Mukhtar, R. Shah, S. Noor, The numerical investigation of a fractional-order multi-dimensional model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1102. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102 |
[45] | M. M. Al-Sawalha, R. P. Agarwal, R. Shah, O. Y. Ababneh, W. Weera, A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas, Mathematics, 10 (2022), 2293. https://doi.org/10.3390/math10132293 doi: 10.3390/math10132293 |
[46] | N. A. Shah, H. A. Alyousef, S. A. El-Tantawy, R. Shah, J. D. Chung, Analytical investigation of fractional-order Korteweg-De-Vries-type equations under Atangana-Baleanu-Caputo operator: Modeling nonlinear waves in a plasma and fluid, Symmetry, 14 (2022), 739. https://doi.org/10.3390/sym14040739 doi: 10.3390/sym14040739 |
[47] | A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 229. |
[48] | O. A. Arqub, A. El-Ajou, S. Momani, Construct and predicts solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations, J. Comput. Phys., 293 (2015), 385–399. https://doi.org/10.1016/j.jcp.2014.09.034 doi: 10.1016/j.jcp.2014.09.034 |