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1. Introduction

Many engineering and scientific issues have been solved using fractional differential equations
(FDEs). In the past two decades, fractional differential equations have garnered great attention due
to their capacity to simulate numerous events in various scientific and engineering disciplines. Models
based on fractional differential equations can depict various physical applications in science and
engineering [1–3]. These models are precious for a wide range of physical problems. These equations
are represented by fractional linear and non-linear PDEs, and fractional differential equations must
be solved [4–6]. Most non-linear FDEs need approximate and numerical solutions since they cannot
be solved precisely [7–9]. Variational iteration method [10], Adomian decomposition method [11],
homotopy analysis method [12], homotopy perturbation method [13], tanh-coth method [14],
spectral collocation method [15], Mittag-Leffler function method [16], exp function method [17] and
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differential quadrature method [18], are a few of the more recent analytical techniques for non-linear
problems [19–21].

The Gardner equation [22] is an amalgamation of KdV and modified KdV equations, and it is
generated to demonstrate the description of solitary inner waves in shallow water. The Gardner
equation is frequently utilized in many areas of physics, including quantum area theories, plasma
physics and fluid physics [23, 24]. It also discusses many wave phenomena in the plasma and solid
states [25]. In the current research, we recognize the fractional Gardner (FG) equation of the form [26]:

Dα
ηu(ω, η) + 6

(
u − λ2u2

)
uω + uωωω = 0, 0 < α ≤ 1,

where λ is real constant, here, u(ω, η) is the wave term with scaling variable spaces (ω) and time (η),
the functions uuω and u2uω are symbolizes the non-linear wave steepening and uωωω defines the wave
dispersive effect.

The Cahn-Hilliard equation, first presented in 1958 by Cahn and Hilliard [27], serves as an example
of the phase separation of a binary alloy under critical temperature. This equation is a key component of
several intriguing physical processes, including spinodal decomposition, phase separation, and phase
ordering dynamics [28, 29]. In this framework, the following fractional Cahn-Hilliard (FCH) equation
is taken into consideration [26, 30] :

Dα
ηu(ω, η) − uω − 6uu2

ω −
(
3u2 − 1

)
uωω + uωωωω = 0, 0 < α ≤ 1.

Several novels and cutting-edge approaches to studying non-linear differential systems with
fractional order have been developed over the previous thirty years, concurrently developing
new computing techniques and symbolic programming. In the pre-computer age, most complex
phenomena, such as solitons, chaos, singular formation, asymptotic characteristics, etc., remained
unnoticed or, at best, weakly projected. This revolution in understanding has been sparked by
analytical methods, new mathematical theories and computing techniques that let us investigate non-
linear complex events. Many techniques have been used, including the F-expansion method [31], the
q-Homotopy analysis method [32], the reduced differential transform method [33], the generalized
Kudryashov method [34], the sub equation method [35], the Adomian decomposition method, the
homotopy analysis method [36], variational iteration method [37], and improved (G/G)-expansion
method [38].

The Jordanian mathematician, Omar Abu Arqub created the residual power series method in 2013 as
a technique for quickly calculating the coefficients of the power series solutions for 1st and 2nd-order
fuzzy differential equations [39]. Without perturbation, linearization, or discretization, the residual
power series method provides a powerful and straightforward power series solution for highly linear
and non-linear equations. The residual power series method has been used to solve an increasing
variety of non-linear ordinary and partial differential equations of various sorts, orders, and classes
during the past several years. It has been used to make solitary pattern results for non-linear dispersive
fractional partial differential equations and to predict them [40], to solve the non-linear singular
highly differential equation known as the generalized Lane-Emden equation [41], to solve higher-
order ordinary differential equations numerically [42], to approximate solve the fractional non-linear
KdV-Burger equations, to predict and represent The RPSM differs from several other analytical and
numerical approaches in some crucial ways [43]. First, there is no requirement for a recursion
connection or for the RPSM to compare the coefficients of the related terms. Second, by reducing the
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associated residual error, the RPSM offers a straightforward method to guarantee the convergence of the
series solution. Thirdly, the RPSM doesn’t suffer from computational rounding mistakes and doesn’t
use a lot of time or memory. Fourth, the approach may be used immediately to the provided issue by
selecting an acceptable starting guess approximation since the residual power series method does not
need any converting when transitionary from low-order to higher-order and from simple linearity to
complicated nonlinearity [44–46].

This article uses the Laplace residual power series technique to achieve the definitive solution of
the fractional-order non-linear Cahn-Hilliard and Gardner equations. The Laplace transformation
efficiently integrates the RPSM for the renewability algorithmic technique. The fractional Caputo
derivative explains quantitative categorizations of the Gardner and Cahn-Hilliard equations. The
offered methodology is well demonstrated in modeling and calculation investigation.

2. Preliminaries

Definition 2.1. The fractional Caputo derivative of a function u(ω, η) of order α is given as
CDα

ηu(ω, η) = Jm−α
η um(ω, η), m − 1 < α ≤ m, η > 0, (2.1)

where m ∈ N and Jαη is the fractional Riemann-Liouville integral of u(ω, η) of fractional-order α is
define as

Jαη u(ω, η) =
1

Γ(α)

∫ η

0
(t − ω)u(ω, t)dt, α > 0, (2.2)

assuming that the given integral exists.

Definition 2.2. Assume that the continuous piecewise function u(ω, η) is expressed as:

u(ω, υ) = £η[u(ω, η)] =

∫ ∞

0
e−υηu(ω, η)dη, υ > α, (2.3)

where the inverse Laplace transform is expressed as

u(ω, η) = £−1
υ [u](ω, υ)] =

∫ l+i∞

l−i∞
eυηu(ω, υ)dυ, l = Re(υ) > 0. (2.4)

Lemma 2.1. Suppose that u(ω, η) is a piecewise continuous term and of exponential-order ψ and
u(ω, υ) = £η[u(ω, η)], we get

(1) £η[Jβηu(ω, η)] =
u(ω,υ)
υβ

, β > 0.
(2) £η[D

ψ
ηu(ω, η)] = υψu(ω, υ) −

∑m−1
k=0 υ

ψ−k−1uk(ω, 0), m − 1 < ψ ≤ m.
(3) £η[D

nψ
η u(ω, η)] = υnψu(ω, υ) −

∑n−1
k=0 υ

(n−k)ψ−1Dkψ
η u(ω, 0), 0 < ψ ≤ 1.

Proof. The proof are in [1–3, 47]. �

Theorem 2.1. Let us assume that u(ω, η) is a continuous piecewise on I × [0,∞). Consider that
u(ω, υ) = £η[u(ω, η)] has fractional power series (FPS) representation:

u(ω, υ) =

∞∑
i=0

fi(ω)
υ1+iα , 0 < ζ ≤ 1, ω ∈ I, υ > ψ. (2.5)

Then, fi(ω) = Dnα
η u(ω, 0).
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Proof. For proof, see Ref. [47]. �

Remark 2.1. The inverse Laplace transform of the Eq (2.5) represented as:

u(ω, η) =

∞∑
i=0

Dψ
ηu(ω, 0)

Γ(1 + iψ)
ηi(ψ), 0 < ψ ≤ 1, η ≥ 0. (2.6)

which is the same as Taylor’s formula for fractions, that can be found in [48].

Theorem 2.2. Suppose that u(ω, η) is piecewise continuous on I × [0,∞) and of order ψ. As
shown in Theorem 2.1, u(ω, υ) = £η[u(ω, η)]. Taylor’s formula can be written in its new form. If∣∣∣υ£η[Diα+1

η u(ω, η)]
∣∣∣ ≤ M(ω), on I × (ψ, γ], where 0 < α ≤ 1, then Ri(ω, υ) the rest of the new way of

writing fractions. The following inequality is true about Taylor’s formula in Theorem 2.1:

|Ri(ω, υ)| ≤
M(ω)

S 1+(i+1)α , ω ∈ I, ψ < υ ≤ γ. (2.7)

Proof. Let us consider that £η
[
Dkα
η u(ω, η)

]
(υ) on interval I× (ψ, γ] for k = 0, 1, 2, 3, · · · , i + 1, suppose

that ∣∣∣υ£η[Diα+1
η u(ω, η)]

∣∣∣ ≤ M(ω), ω ∈ I, ψ < υ ≤ γ. (2.8)

Using the definition of remainder, Ri(ω, υ) = u(ω, υ) −
∑i

k=0
Dkα
η u(ω,0)
υ1+kα , we can obtain

S 1+(i+1)αRi(ω, υ) =υ1+(i+1)αu(ω, υ) −
i∑

k=0

υ(i+1−k)αDkα
η u(ω, 0)

=υ

υ(i+1)αu(ω, υ) −
i∑

k=0

υ(i+1−k)α−1Dkα
η u(ω, 0)


=υ£η

[
D(n+1)ζ
η u(ω, η)

]
.

(2.9)

From Eqs (2.8) and (2.9) that |υ1+(i+1)αRi(ω, υ)| ≤ M(ω). Thus,

− M(ω) ≤ υ1+(i+1)αRi(ω, υ) ≤ M(ω), ω ∈ I, ψ < s ≤ γ. (2.10)

The proof of Theorem 2.2 is completed. �

3. General implementation of Laplace residual power series method

Dα
ηu(ω, η) − uω + 6uu2

ω −
(
3u2 − 1

)
uωω + uωωωω = 0, 0 < α ≤ 1, (3.1)

with the initial condition,
u(ω, η) = f0(ω), (3.2)

where a and c are free constants and Dα
η is the Caputo-fractional derivative. First, we use the Laplace

transformation to Eq (3.1),

£
[
Dα
ηu(ω, η)

]
= −£

[
uω + 6uu2

ω −
(
3u2 − 1

)
uωω + uωωωω

]
. (3.3)
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By the fact that £
[
Dα
ηu(ω, η)

]
= υa£[u(ω, η)] − υa−1u(ω, 0) and using the initial condition (3.2), we

rewrite (3.3) as

U(ω, υ) =
f0(ω)
υ
−

b
υα

£
[(

£−1£
[
Uω + 6UU2

ω −
(
3U2 − 1

)
Uωω + Uωωωω

])]
, (3.4)

where U(ω, υ) = £[u(ω, η)].
Second, we define the transform term U(ω, υ) as the following expression:

U(ω, υ) =

∞∑
n=0

fυ(ω)
υnα+1 . (3.5)

The series form of kth-truncated of Eq (3.5):

Uk(ω, υ) =

k∑
n=0

fυ(ω)
υnα+1 =

fo(ω)
υ

+

k∑
n=1

fk(ω)
υnα+1 . (3.6)

The laplace residual function to (3.5) is

£Resk(ω, υ) =Uk(ω, υ) −
f0(ω)
υ
−

b
υα

£
[(

£−1£
[
Uω + 6UU2

ω −
(
3U2 − 1

)
Uωω + Uωωωω

])]
. (3.7)

Third, we use a few properties that come up in the standard RPSM to point out certain facts:
£ Res(ω, υ) = 0 and limk→∞ £ Res uk(ω, υ) = £ Res(ω, υ) for each υ > 0;
limυ→∞ u£ Res(ω, υ) = 0⇒ limυ→∞ u£ Res(ω, υ) = 0;
limυ→∞ ukα+1£ Res(ω, υ) = limυ→∞ ukα+1£ Resk(ω, υ) = 0, 0 < α ≤ 1, k = 1, 2, 3, . . . .

So, to find the co-efficient functions fn(ω), we solve the following scheme successively:

lim
υ→∞

(
uka+1£Resk(ω, υ)

)
= 0, 0 < α ≤ 1, k = 1, 2, 3, . . . .

Finally, we use the inverse Laplace to Uk(ω, υ), to achieved the kth approximated supportive result
uk(ω, η).

Next, we investigate the efficiency of the suggested above technique by investigating a numerical
problem of the Cahn-Hilliard and Gardner models.

Example 3.1. Consider fractional-order Cahn-Hilliard equation,

Dα
ηu(ω, η) − uω + 6uu2

ω −
(
3u2 − 1

)
uωω + uωωωω = 0, 0 < α ≤ 1, (3.8)

with initial condition,

u(ω, 0) = tanh
 √2

2
ω

 . (3.9)

The exact result when α = 1 is

u(ω, η) = tanh
 √2

2
(ω + η)

 . (3.10)
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Applying laplace transform to (3.8) and using the initial condition (3.9), we get

U(ω, υ) =
tanh

( √
2

2 ω
)

υ
−

1
υα

£η
[
£−1
η (U(ω, υ)) − 6£−1

η (U(ω, υ)) £−1
η

(
U2
ω(ω, υ)

)
− 3£−1

η (U(ω, υ)) £−1
η (Uωω(ω, υ)) + £−1

η (Uωω(ω, υ)) + £−1
η (Uωωωω(ω, υ))

]
.

(3.11)

The k-th truncated term series of (3.20) is

U(ω, υ) =
tanh

( √
2

2 ω
)

υ
+

k∑
n=1

fn(ω)
υnα+1 ,

(3.12)

and the Laplace residual k-th term is

£ηResk(ω, υ) = U(ω, υ) −
tanh

( √
2

2 ω
)

υ
+

1
υα

£η
[
£−1
η (U(ω, υ)) − 6£−1

η (U(ω, υ)) £−1
η

(
U2
ω(ω, υ)

)
− 3£−1

η (U(ω, υ)) £−1
η (Uωω(ω, υ)) + £−1

η (Uωω(ω, υ)) + £−1
η (Uωωωω(ω, υ))

]
.

(3.13)

Now, to determine fk(x), k = 1, 2, 3, · · · , we put the kth-truncated series (3.12) into the kth-Laplace
residual term (3.13), multiply the solution of equation by υkα+1, and then solve recursively the relation
limυ→∞[υkα+1Resk(x, υ)] = 0, k = 1, 2, 3, · · · for fk. Following are the first some components of the
sequences fk(x):

f1(ω) =
sech

(
ω
√

2

)2

√
2

,

f2(ω) = − sech
(
ω
√

2

)2

tanh
(
ω
√

2

)
,

f3(ω) =
1
8

sech
(
ω
√

2

)6 (
−4
√

2 + (264 − 96 cosh(
√

2ω) +
√

2 sinh(2
√

2ω)) tanh
(
ω
√

2

))
+

−21
2

sech
(
ω
√

2

)6

tanh
(
ω
√

2

)
+ 12 sech

(
ω
√

2

)4

tanh
(
ω
√

2

)3 Γ(1 + 2α)
Γ(1 + α)2 ,

...

(3.14)

Putting the values of fn(ω), (n ≥ 1) in Eq (3.12), we have

U(ω, υ) =
tanh

( √
2

2 ω
)

υ
+

sech
(
ω
√

2

)2

√
2

1
υα+1 − sech

(
ω
√

2

)2

tanh
(
ω
√

2

)
1

υ2α+1

+
1
8

sech
(
ω
√

2

)6 (
−4
√

2 + (264 − 96 cosh(
√

2ω) +
√

2 sinh(2
√

2ω)) tanh
(
ω
√

2

))
+

−21
2

sech
(
ω
√

2

)6

tanh
(
ω
√

2

)
+ 12 sech

(
ω
√

2

)4

tanh
(
ω
√

2

)3 Γ(1 + 2α)
Γ(1 + α)2

1
υ3α+1

+ · · · .

(3.15)
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Applying inverse Laplace transform, we get

u(ω, η) = tanh
 √2

2
ω

 +
sech

(
ω
√

2

)2

√
2

ηα

Γ(α + 1)
− sech

(
ω
√

2

)2

tanh
(
ω
√

2

)
η2α

Γ(2α + 1)

+
1
8

sech
(
ω
√

2

)6 (
−4
√

2 + (264 − 96 cosh(
√

2ω) +
√

2 sinh(2
√

2ω)) tanh
(
ω
√

2

))
+

−21
2

sech
(
ω
√

2

)6

tanh
(
ω
√

2

)
+ 12 sech

(
ω
√

2

)4

tanh
(
ω
√

2

)3 Γ(1 + 2α)
Γ(1 + α)2

η3α

Γ(3α + 1)

+ · · · .

(3.16)

Throughout this investigation, the method are being employed to assess the precise analytical
solution of fractional-order Cahn-Hilliard equation. For various spatial and temporal parameters, the
Caputo fractional derivative operators in facilitate appropriate numerical findings for the Cahn-Hilliard
equation option revenue framework utilizing multiple orders. In Figure 1, actual and approximate
solutions graph and second fractional order α = 0.8 of Example 3.1 at α = 1. In Figure 2, approximate
result graph at α = 0.6, 0.4 and Figure 3, the approximate result at various value of α of Example 3.1.

Figure 1. The exact and approximate results graph and 2nd fractional-order α = 0.8 of
Example 3.1 at α = 1.

Figure 2. The approximate result graph at α = 0.6, 0.4 for Example 3.1.
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Figure 3. The approximate result at various value of α for Example 3.1.

Example 3.2. Consider the homogeneous fractional Gardner equation,

Dα
ηu(ω, η) + 6

(
u − ε2u2

)
uω + uωωω = 0, 0 < α ≤ 1, (3.17)

with the initial condition,

u(ω, 0) =
1
2

+
1
2

tanh
(ω

2

)
. (3.18)

The exact result when ε = 1, α = 1 is

u(ω, η) =
1
2

+
1
2

tanh
(ω − η

2

)
. (3.19)

Applying Laplace transform to (3.17) and using the initial condition (3.18), we get

U(ω, υ) =

(
1
2

+
1
2

tanh(
ω

2
)
)

1
υ
−

1
υα

£η
[
6
[
£−1
η [U(ω, υ)] £−1

η [Uω(ω, υ)]

− ε2£−1
η

[
U2(ω, υ)

]
£−1
η [Uω(ω, υ)]

]]
−

1
υα

£η
[
£−1
η [Uωωω(ω, υ)]

]
.

(3.20)

The k-th truncated term series of (3.20) is

U(ω, υ) =

(
1
2

+
1
2

tanh(
ω

2
)
)

1
υ

+

k∑
n=1

fn(ω)
υnα+1 , (3.21)

and the k-th Laplace residual function is

£ηResk(ω, υ) = U(ω, υ) −
(
1
2

+
1
2

tanh(
ω

2
)
)

1
υ

+
1
υα

£η
[
6
[
£−1
η [Uk(ω, υ)] £−1

η [Ukω(ω, υ)]

− ε2£−1
η

[
U2

k (ω, υ)
]

£−1
η [Ukω(ω, υ)]

]]
+

1
υα

£η
[
£−1
η [Ukωωω(ω, υ)]

]
.

(3.22)
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Now, to determine fk(x), k = 1, 2, 3, · · · , we put the kth-truncate series (3.21) into the residual term
of kth-Laplace (3.22), multiply the result equation by υkα+1, and then solve recursively the relations
lims→∞[υkα+1Resk(x, υ)] = 0, k = 1, 2, 3, · · · for fk. First few components of the sequence fk(x),

f1(ω) =
1
8

sech
(
ω

4

)4 [
−1 + (−4 + 3ε3) cosh(ω) + 3(−1 + ε2) sinh(ω)

]
,

f2(ω) =
−1
64

sech
(
ω

4

)7 [
− 24(−1 + ε2) cosh

(
ω

2

)
− 6(22 − 37ε2 + 15ε4) cosh

(
3ω
2

)
+ 24 cosh

(
5ω
2

)
− 42ε2 cosh

(
5ω
2

)
+ 18ε4 cosh

(
5ω
2

)
+ 206 sinh

(
ω

2

)
− 204ε2 sinh

(
ω

2

)
− 129 sinh

(
3ω
2

)
+ 222ε2 sinh

(
3ω
2

)
− 90ε4 sinh

(
3ω
2

)
+ 25 sinh

(
5ω
2

)
− 42ε2 sinh

(
5ω
2

)
+ 18ε4 sinh

(
5ω
2

) ]
,

....

(3.23)

Putting the values of fn(x), (n ≥ 1) in Eq (3.21), we have

U(ω, υ) =

(
1
2

+
1
2

tanh(
ω

2
)
)

1
υ

+
1
8

sech
(
ω

4

)4 [
−1 + (−4 + 3ε3) cosh(ω) + 3(−1 + ε2) sinh(ω)

] 1
υα+1

−
1
64

sech
(
ω

4

)7 [
− 24(−1 + ε2) cosh

(
ω

2

)
− 6(22 − 37ε2 + 15ε4) cosh

(
3ω
2

)
+ 24 cosh

(
5ω
2

)
− 42ε2 cosh

(
5ω
2

)
+ 18ε4 cosh

(
5ω
2

)
+ 206 sinh

(
ω

2

)
− 204ε2 sinh

(
ω

2

)
− 129 sinh

(
3ω
2

)
+ 222ε2 sinh

(
3ω
2

)
− 90ε4 sinh

(
3ω
2

)
+ 25 sinh

(
5ω
2

)
− 42ε2 sinh

(
5ω
2

)
+ 18ε4 sinh

(
5ω
2

) ] 1
υ2α+1 + · · · .

(3.24)

Applying inverse Laplace transform, we get

u(ω, η) =

(
1
2

+
1
2

tanh(
ω

2
)
)

+
1
8

sech
(
ω

4

)4 [
−1 + (−4 + 3ε3) cosh(ω) + 3(−1 + ε2) sinh(ω)

] ηα

Γ(α + 1)

−
1

64
sech

(
ω

4

)7 [
− 24(−1 + ε2) cosh

(
ω

2

)
− 6(22 − 37ε2 + 15ε4) cosh

(
3ω
2

)
+ 24 cosh

(
5ω
2

)
− 42ε2 cosh

(
5ω
2

)
+ 18ε4 cosh

(
5ω
2

)
+ 206 sinh

(
ω

2

)
− 204ε2 sinh

(
ω

2

)
− 129 sinh

(
3ω
2

)
+ 222ε2 sinh

(
3ω
2

)
− 90ε4 sinh

(
3ω
2

)
+ 25 sinh

(
5ω
2

)
− 42ε2 sinh

(
5ω
2

)
+ 18ε4 sinh

(
5ω
2

) ] η2α

Γ(2α + 1)
+ · · · .

(3.25)
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Throughout this investigation, the method are being employed to assess the precise analytical
solution of fractional-order Gardner equation. For various spatial and temporal parameters, the
Caputo fractional derivative operators in facilitate appropriate numerical findings for the Cahn-Hilliard
equation option revenue framework utilizing multiple orders. In Figure 4, actual and approximate
solutions graph and second fractional order α = 0.8 of Example 3.2 at α = 1. In Figure 5, approximate
result graph at α = 0.6, 0.4 and Figure 6, the approximate result at various value of α of Example 3.2.

Figure 4. The actual and approximate results graph and second fractional order at α = 0.8
of Example 3.2.

Figure 5. The approximate result at α = 0.6, 0.4 of Example 3.2.

Figure 6. The approximate result at various value of α for Example 3.2.

AIMS Mathematics Volume 8, Issue 3, 5574–5587.



5584

4. Conclusions

In this article, significant nonlinear fractional Cahn-Hilliard and Gardner equations are solved
utilizing a combination of the Laplace transformation and the residual power series. This study
demonstrated that the suggested method, Laplace residual power series, is a straightforward and
effective analytical technique for constructing exact and approximation solutions for partial differential
equations with suitable initial conditions. The aforementioned method provided us with solutions in the
Laplace transform space via a straightforward method for obtaining the expansion series constants with
the aid of the limit idea at infinity. With fewer series terms, the approximate solutions are achieved.
The proposed technique is used to solve two separate physical models, and its capacity to handle
fractional nonlinear equations with high precision and straightforward computing processes has been
demonstrated.
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