Research article Special Issues

New proofs for three identities of seventh order mock theta functions

  • Received: 19 October 2022 Revised: 29 November 2022 Accepted: 02 December 2022 Published: 08 December 2022
  • MSC : 11F27, 33D15

  • Using the three-term Weierstrass relation for theta functions and the properties of Hecke-type double sums and Appell-Lerch sums, we give new and simple proofs for the seventh order mock theta conjectures.

    Citation: Lijun Hao. New proofs for three identities of seventh order mock theta functions[J]. AIMS Mathematics, 2023, 8(2): 4806-4813. doi: 10.3934/math.2023238

    Related Papers:

  • Using the three-term Weierstrass relation for theta functions and the properties of Hecke-type double sums and Appell-Lerch sums, we give new and simple proofs for the seventh order mock theta conjectures.



    加载中


    [1] S. Cooper, Ramanujan's theta functions, Cham: Springer, 2017. http://dx.doi.org/10.1007/978-3-319-56172-1
    [2] F. Garvan, J. Liang, Automatic proof of theta-function identities, arXiv: 1807.08051, 2016.
    [3] G. Gasper, M. Rahman, Basic hypergeometric series, 2Eds., Cambridge: Cambridge University Press, 2004. http://dx.doi.org/10.1017/CBO9780511526251
    [4] D. Hickerson, A proof of the mock theta conjectures, Invent. Math., 94 (1988), 639–660. http://dx.doi.org/10.1007/BF01394279 doi: 10.1007/BF01394279
    [5] D. Hickerson, On the seventh order mock theta functions, Invent. Math., 94 (1988), 661–677. http://dx.doi.org/10.1007/BF01394280 doi: 10.1007/BF01394280
    [6] D. Hickerson, E. Mortenson, Hecke-type double sums, Appell-Lerch sums, and mock theta functions, Ⅰ, Proc. Lond. Math. Soc., 109 (2014), 382–422. http://dx.doi.org/10.1112/plms/pdu007 doi: 10.1112/plms/pdu007
    [7] S. Ramanujan, Collected papers, London: Cambrige University Press, 1927.
    [8] S. Robins, Generalized Dedekind $\eta$-products, In: The Rademacher legacy to mathematics, New York: Amer Mathematical Society, 1994,119–128.
    [9] G. Watson, The final problem: an account of the mock theta functions, J. Lond. Math. Soc., 1 (1936), 55–80. http://dx.doi.org/10.1112/jlms/s1-11.1.55 doi: 10.1112/jlms/s1-11.1.55
    [10] G. Watson, The mock theta functions (2), Proc. Lond. Math. Soc., 2 (1937), 274–304. http://dx.doi.org/10.1112/plms/s2-42.1.274 doi: 10.1112/plms/s2-42.1.274
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1014) PDF downloads(50) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog