In this paper, by the Stampacchia method, we consider the boundedness of positive solutions to the following mixed local and nonlocal quasilinear elliptic operator
$ \begin{align*} \left\{\begin{array}{rl} -\Delta_{p}u+(-\Delta)_{p}^su = f(x)u^{\gamma},&x\in\Omega,\\ u = 0,\; \; \; \; \; \; \; \; &x\in \mathbb{R}^{N}\setminus\Omega, \end{array} \right. \end{align*} $
where $ s\in(0, 1) $, $ 1 < p < N $, $ f\in L^{m}(\Omega) $ with $ m > \frac{Np}{p(s+p-1)-\gamma(N-sp)} $, $ 0\leqslant\gamma < p_s^*-1 $, $ p_s^{*} = \frac{Np}{N-sp} $ is the critical Sobolev exponent.
Citation: Xicuo Zha, Shuibo Huang, Qiaoyu Tian. Uniform boundedness results of solutions to mixed local and nonlocal elliptic operator[J]. AIMS Mathematics, 2023, 8(9): 20665-20678. doi: 10.3934/math.20231053
In this paper, by the Stampacchia method, we consider the boundedness of positive solutions to the following mixed local and nonlocal quasilinear elliptic operator
$ \begin{align*} \left\{\begin{array}{rl} -\Delta_{p}u+(-\Delta)_{p}^su = f(x)u^{\gamma},&x\in\Omega,\\ u = 0,\; \; \; \; \; \; \; \; &x\in \mathbb{R}^{N}\setminus\Omega, \end{array} \right. \end{align*} $
where $ s\in(0, 1) $, $ 1 < p < N $, $ f\in L^{m}(\Omega) $ with $ m > \frac{Np}{p(s+p-1)-\gamma(N-sp)} $, $ 0\leqslant\gamma < p_s^*-1 $, $ p_s^{*} = \frac{Np}{N-sp} $ is the critical Sobolev exponent.
[1] | B. Abdellaoui, A. Attar, R. Bentifour, On the fractional $p$-Laplacian equations with weight and general datum, Adv. Nonlinear Anal., 8 (2016), 144–174. https://doi.org/10.1515/anona-2016-0072 doi: 10.1515/anona-2016-0072 |
[2] | R. Arora, V. D. Rǎdulescu, Combined effects in mixed local-nonlocal stationary problems, arXiv, 2021. https://doi.org/10.48550/arXiv.2111.06701 |
[3] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Partial Differ. Equations, 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908 |
[4] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math., 2023. https://doi.org/10.1007/s11854-023-0272-5 doi: 10.1007/s11854-023-0272-5 |
[5] | S. Biagi, D. Mugnai, E. Vecchi, A Brezis-Oswald approach for mixed local and nonlocal operators, Commun. Contemp. Math., 2022. https://doi.org/10.1142/S0219199722500572 doi: 10.1142/S0219199722500572 |
[6] | S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. R. Soc. Edinburgh Sect. A, 151 (2021), 1611–1641. https://doi.org/10.1017/prm.2020.75 doi: 10.1017/prm.2020.75 |
[7] | K. Biroud, Mixed local and nonlocal equation with singular nonlinearity having variable exponent, J. Pseudo Differ. Oper. Appl., 14 (2023), 13. https://doi.org/10.1007/s11868-023-00509-7 doi: 10.1007/s11868-023-00509-7 |
[8] | A. Biswas, M. Modasiya, A. Sen, Boundary regularity of mixed local-nonlocal operators and its application, Ann. Mat. Pura Appl., 202 (2023), 679–710. https://doi.org/10.1007/s10231-022-01256-0 doi: 10.1007/s10231-022-01256-0 |
[9] | S. S. Byun, D. Kumar, H. S. Lee, Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities, arXiv, 2303. https://doi.org/10.48550/arXiv.2303.17259 doi: 10.48550/arXiv.2303.17259 |
[10] | S. Dipierro, E. P. Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptotic Anal., 128 (2022), 571–594. https://doi.org/10.3233/ASY-211718 doi: 10.3233/ASY-211718 |
[11] | S. Dipierro, M. Medina, I. Peral, E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb{R}^{N}$, Manuscripta Math., 153 (2017), 183–230. https://doi.org/10.1007/s00229-016-0878-3 doi: 10.1007/s00229-016-0878-3 |
[12] | C. D. Filippis, G. Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann., 2022. https://doi.org/10.1007/s00208-022-02512-7 doi: 10.1007/s00208-022-02512-7 |
[13] | P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc., 375 (2022), 5393–5423. https://doi.org/10.1090/tran/8621 doi: 10.1090/tran/8621 |
[14] | P. Garain, E. Lindgren, Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations, Calculus Var. Partial Differ. Equations, 62 (2023), 67. https://doi.org/10.1007/s00526-022-02401-6 doi: 10.1007/s00526-022-02401-6 |
[15] | P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, Nonlinear Anal., 223 (2022), 113022. https://doi.org/10.1016/j.na.2022.113022 doi: 10.1016/j.na.2022.113022 |
[16] | S. Huang, H. Hajaiej, Lazer-McKenna type problem involving mixed local and nonlocal elliptic operators, Res. Gate, 2023. https://doi.org/10.13140/RG.2.2.13140.68481 doi: 10.13140/RG.2.2.13140.68481 |
[17] | C. LaMao, S. Huang, Q. Tian, C. Huang, Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators, AIMS Math., 7 (2022), 4199–4210. https://doi.org/10.3934/math.2022233 doi: 10.3934/math.2022233 |
[18] | X. Li, S. Huang, M. Wu, C. Huang, Existence of solutions to elliptic equation with mixed local and nonlocal operators, AIMS Math., 7 (2022), 13313–13324. https://doi.org/10.3934/math.2022735 doi: 10.3934/math.2022735 |
[19] | T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031–6068. https://doi.org/10.3934/dcds.2015.35.6031 doi: 10.3934/dcds.2015.35.6031 |
[20] | E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[21] | G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189–257. https://doi.org/10.5802/aif.204 doi: 10.5802/aif.204 |
[22] | A. Salort, E. Vecchi, On the mixed local-nonlocal Hénon equation, Differ. Integr. Equations, 35 (2022), 795–818. https://doi.org/10.57262/die035-1112-795 doi: 10.57262/die035-1112-795 |
[23] | R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133–154. https://doi.org/10.5565/PUBLMAT-58114-06 doi: 10.5565/PUBLMAT-58114-06 |
[24] | X. Su, E. Valdinoci, Y. Wei, J. Zhang, Regularity results for solutions of mixed local and nonlocal elliptic equations, Math. Z., 302 (2022), 1855–1878. https://doi.org/10.1007/s00209-022-03132-2 doi: 10.1007/s00209-022-03132-2 |