Give us a linked graph, $ G = (V, E). $ A vertex $ w\in V $ distinguishes between two components (vertices and edges) $ x, y\in E\cup V $ if $ d_G(w, x)\neq d_G (w, y). $ Let $ W_{1} $ and $ W_{2} $ be two resolving sets and $ W_{1} $ $ \neq $ $ W_{2} $. Then, we can say that the graph $ G $ has double resolving set. A nanotube derived from an quadrilateral-octagonal grid belongs to essential and extensively studied compounds in materials science. Nano-structures are very important due to their thickness. In this article, we have discussed the metric dimension of the graphs of nanotubes derived from the quadrilateral-octagonal grid. We proved that the generalized nanotube derived from quadrilateral-octagonal grid have three metric dimension. We also check that the exchange property is also held for this structure.
Citation: Ali N. A. Koam, Sikander Ali, Ali Ahmad, Muhammad Azeem, Muhammad Kamran Jamil. Resolving set and exchange property in nanotube[J]. AIMS Mathematics, 2023, 8(9): 20305-20323. doi: 10.3934/math.20231035
Give us a linked graph, $ G = (V, E). $ A vertex $ w\in V $ distinguishes between two components (vertices and edges) $ x, y\in E\cup V $ if $ d_G(w, x)\neq d_G (w, y). $ Let $ W_{1} $ and $ W_{2} $ be two resolving sets and $ W_{1} $ $ \neq $ $ W_{2} $. Then, we can say that the graph $ G $ has double resolving set. A nanotube derived from an quadrilateral-octagonal grid belongs to essential and extensively studied compounds in materials science. Nano-structures are very important due to their thickness. In this article, we have discussed the metric dimension of the graphs of nanotubes derived from the quadrilateral-octagonal grid. We proved that the generalized nanotube derived from quadrilateral-octagonal grid have three metric dimension. We also check that the exchange property is also held for this structure.
[1] | M. F. Nadeem, M. Hassan, M. Azeem, S. U. D. Khan, M. R. Shaik, M. A. F. Sharaf, et al., Application of resolvability technique to investigate the different polyphenyl structures for polymer industry, J. Chem., 2021 (2021), 6633227. https://doi.org/10.1155/2021/6633227 doi: 10.1155/2021/6633227 |
[2] | H. M. A. Siddiqui, N. Imran, Computation of metric dimension and partition dimension of nanotubes, J. Comput. Theor. Nanosci., 12 (2015), 199–203. https://doi.org/10.1166/jctn.2015.3717 doi: 10.1166/jctn.2015.3717 |
[3] | Z. Hussain, S. M. Kang, M. Rafique, M. Munir, U. Ali, A. Zahid, et al., Bounds for partition dimension of m-wheels, Open Phys., 17 (2019), 340–344. https://doi.org/10.1515/Phys-2019-0037 doi: 10.1515/Phys-2019-0037 |
[4] | A. Shabbir, M. Azeem, On the partition dimension of the tri-hexagonal $\alpha$-Boron nanotube, IEEE Access, 9 (2021), 55644–55653. https://doi.org/10.1109/ACCESS.2021.3071716 doi: 10.1109/ACCESS.2021.3071716 |
[5] | H. Alshehri, A. Ahmad, Y. Alqahtani, M. Azeem, Vertex metric-based dimension of generalized perimantanes diamondoid structure, IEEE Access, 10 (2022), 43320–43326. https://doi.org/10.1109/ACCESS.2022.3169277 doi: 10.1109/ACCESS.2022.3169277 |
[6] | Al-N. Al-H. Ahmad, A. Ahmad, Generalized perimantanes diamondoid structure and their edge-based metric dimensions, AIMS Mathematics, 7 (2022), 11718–11731. https://doi.org/10.3934/math.2022653 doi: 10.3934/math.2022653 |
[7] | S. Manzoor, M. K. Siddiqui, S. Ahmad, On entropy measures of polycyclic hydroxychloroquine used for novel Coronavirus (COVID-19) treatment, Polycycl. Aromat. Comp., 42 (2020), 2947–2969. https://doi.org/10.1080/10406638.2020.1852289 doi: 10.1080/10406638.2020.1852289 |
[8] | M. S. Alatawi, A. Ahmad, A. N. A. Koam, S. Husain, M. Azeem, Computing vertex resolvability of benzenoid tripod structure, AIMS Mathematics, 7 (2022), 6971–6983. https://doi.org/10.3934/math.2022387 doi: 10.3934/math.2022387 |
[9] | H. M. A. Siddiqui, M. Imran, Computing the metric and partition dimension of H-Naphtalenic and VC5C7 nanotubes, J. Optoelectron. Adv. Mater., 17 (2016), 790–794. |
[10] | N. Mehreen, R. Farooq, S. Akhter, On partition dimension of fullerene graphs, AIMS Mathematics, 3 (2018), 343–352. https://doi.org/10.3934/Math.2018.3.343 doi: 10.3934/Math.2018.3.343 |
[11] | B. Yang, M. Rafiullah, H. M. A. Siddiqui, S. Ahmad, On resolvability parameters of some wheel related graphs, J. Chem., 2019 (2019), 9259032. https://doi.org/10.1155/2019/9259032 doi: 10.1155/2019/9259032 |
[12] | P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 1975,549–559. |
[13] | F. Harary, R. A. Melter, On the metric dimension of graphs, Ars Combinatoria, 2 (1976), 191–195. |
[14] | A. Sebö, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 383–393. https://doi.org/10.1287/moor.1030.0070 doi: 10.1287/moor.1030.0070 |
[15] | L. M. Blumenthal, Theory and applications of distance geometry, Oxford: Clarendon, 1953. |
[16] | D. L. Boutin, Determining set, resolving sets, and the exchange property, Graphs and Combinatorics, 25 (2009), 789–806. https://doi.org/10.1007/s00373-010-0880-6 doi: 10.1007/s00373-010-0880-6 |
[17] | M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203–236. https://doi.org/10.1080/10543409308835060 doi: 10.1080/10543409308835060 |
[18] | A. Ahmad, A. N. A. Koam, M. H. F. Siddiqui, M. Azeem, Resolvability of the starphene structure and applications in electronics, Ain Shams Eng. J., 13 (2022), 101587. https://doi.org/10.1016/j.asej.2021.09.014 doi: 10.1016/j.asej.2021.09.014 |
[19] | S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 doi: 10.1016/0166-218X(95)00106-2 |
[20] | G. Chartrand, L. Eroh, M. A. Johnson, O. R. Ortrud, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0 |
[21] | P. Manuel, B. Rajan, I. Rajasingh, C. Monica M, On minimum metric dimension of honeycomb networks, Journal of Discrete Algorithms, 6 (2008), 20–27. https://doi.org/10.1016/j.jda.2006.09.002 doi: 10.1016/j.jda.2006.09.002 |
[22] | A. Piperno, Search space contraction in canonical labeling of graphs, arXiv: 0804.4881. |
[23] | S. Söderberg, H. S. Shapiro, A combinatory detection problem, The American Mathematical Monthly, 70 (1963), 1066–1070. https://doi.org/10.1080/00029890.1963.11992174 doi: 10.1080/00029890.1963.11992174 |
[24] | V. Chvátal, Mastermind, Combinatorica, 3 (1983), 325–329. https://doi.org/10.1007/BF02579188 doi: 10.1007/BF02579188 |
[25] | M. Perc, J. Gomez-Gardens, A. Szolnoki, L. M. Floria, Y. Moreno, Evolutionary dynamics of group interactions on structured populations: a review, J. R. Soc. Interface, 10 (2013), 20120997. http://doi.org/10.1098/rsif.2012.0997 doi: 10.1098/rsif.2012.0997 |
[26] | M. Perc, A. Szolnoki, Coevolutionary games–A mini-review, Biosystems, 99 (2010), 109–125. https://doi.org/10.1016/j.biosystems.2009.10.003 doi: 10.1016/j.biosystems.2009.10.003 |
[27] | I. Javaid, S. Shokat, On the partition dimension of some wheel related graphs, Journal of Prime Research in Mathematics, 4 (2008), 154–164. |
[28] | A. N. A. Koam, A. Ahmad, M. Azeem, M. F. Nadeem, Bounds on the partition dimension of one pentagonal carbon nanocone structure, Arab. J. Chem., 15 (2022), 103923. https://doi.org/10.1016/j.arabjc.2022.103923 doi: 10.1016/j.arabjc.2022.103923 |
[29] | M. Basak, L. Saha, G. K. Das, K. Tiwary, Fault-tolerant metric dimension of circulant graphs Cn(1, 2, 3), Theor. Comput. Sci., 817 (2020), 66–79. https://doi.org/10.1016/j.tcs.2019.01.011 doi: 10.1016/j.tcs.2019.01.011 |
[30] | L. Saha, M. Basak, K. Tiwary, K. C. Das, Y. Shang, On the characterization of a minimal resolving set for power of paths, Mathematics, 10 (2022), 2445. https://doi.org/10.3390/math10142445 doi: 10.3390/math10142445 |
[31] | Y. Shang, On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs, Open Math., 14 (2016), 641–648. https://doi.org/10.1515/math-2016-0055 doi: 10.1515/math-2016-0055 |
[32] | M. Azeem, M. K. Jamil, Y. Shang, Notes on the localization of generalized hexagonal cellular networks, Mathematics, 11 (2023), 844. https://doi.org/10.3390/math11040844 doi: 10.3390/math11040844 |
[33] | M. Azeem, M. K. Jamil, A. Javed, A. Ahmad, Verification of some topological indices of Y-junction based nanostructures by M-polynomials, J. Math., 2022 (2022), 8238651. https://doi.org/10.1155/2022/8238651 doi: 10.1155/2022/8238651 |
[34] | M. Azeem, M. Imran, M. F. Nadeem, Sharp bounds on partition dimension of hexagonal Möbius ladder, J. King Saud Univ. Sci., 34 (2022), 101779. https://doi.org/10.1016/j.jksus.2021.101779 doi: 10.1016/j.jksus.2021.101779 |
[35] | J.-B. Liu, A. Zafari, H. Zarei, Metric dimension, minimal doubly resolving sets, and the strong metric dimension for Jellyfish graph and Cocktail party graph, Complexity, 2020 (2020), 9407456. https://doi.org/10.1155/2020/9407456 doi: 10.1155/2020/9407456 |
[36] | J. Kratica, M. Čangalović, V. Kovačević-Vujčić, Computing minimal doubly resolving sets of graphs, Comput. Oper. Res., 36 (2009), 2149–2159. https://doi.org/10.1016/j.cor.2008.08.002 doi: 10.1016/j.cor.2008.08.002 |
[37] | M. Čangalović, J. Kratica, V. Kovačević-Vujčić, M. Stojanović, Minimal doubly resolving sets of prism graphs, Optimization, 62 (2013), 1037–1043. https://doi.org/10.1080/02331934.2013.772999 doi: 10.1080/02331934.2013.772999 |
[38] | F. Simon Raj, A. George, on the metric dimension of silicate stars, ARPN Journal of Engineering and Applied Sciences, 10 (2015), 2187–2192. |
[39] | S. Imran, M. K. Siddique, M. Imran, M. Hussain, Computing the upper bounds for metric dimension of cellulose network, Applied Mathematics E-Notes, 19 (2019), 585–605. |
[40] | X. Zhang, M. Naeem, Metric dimension of crystal cubic carbon structure, J. Math., 2021 (2021), 3438611. https://doi.org/10.1155/2021/3438611 doi: 10.1155/2021/3438611 |
[41] | M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M. S. Sindhu, M. Umar, Computing the metric dimension of convex polytopes related graphs, J. Math. Comput. Sci., 22 (2021), 174–188. http://doi.org/10.22436/jmcs.022.02.08 doi: 10.22436/jmcs.022.02.08 |
[42] | A. N. A. Koam, A. Ahmad, Barycentric subdivisions of Cayley graphs with constant edge metric dimension, IEEE Access, 8 (2020), 80624–80628. https://doi.org/10.1109/ACCESS.2020.2990109 doi: 10.1109/ACCESS.2020.2990109 |
[43] | Z. Hussain, M. Munir, M. Choudhary, S. M. Kang, Computing metric dimension and metric basis of the 2D lattice of alpha-boron nanotubes, Symmetry, 10 (2018), 300. https://doi.org/10.3390/sym10080300 doi: 10.3390/sym10080300 |
[44] | S. Krishnan, B. Rajan, Fault-tolerant resolvability of certain crystal structures, Applied Mathematics, 7 (2016), 599–604. https://doi.org/10.4236/am.2016.77055 doi: 10.4236/am.2016.77055 |
[45] | A. Ahmad, M. Bača, S. Sultan, Computing the metric dimension of kayak paddle graph and cycles with chord, Proyecciones (Antofagasta, On line), 39 (2020), 287–300. https://doi.org/10.22199/issn.0717-6279-2020-02-0018 doi: 10.22199/issn.0717-6279-2020-02-0018 |
[46] | M. K. Siddiqui, M. Naeem, N. A. Rahman, M. Imran, Computing topological indices of certain networks, J. Optoelectron. Adv. Mater., 18 (2016), 884–892. |
[47] | A. R. Ashrafi, T. Doslic, M. Saheli, The eccentric connectivity index of $TUC_{4}C_{8}$ nanotubes, MATCH Commun. Math. Comput. Chem., 65 (2011), 221–230. |
[48] | H. M. A. Siddiqui, M. A. Arshad, M. F. Nadeem, M. Azeem, A. Haider, M. A. Malik, Topological properties of a supramolecular chain of different complexes of N-salicylidene-L-Valine, Polycycl. Aromat. Comp., 42 (2022), 6185–6198. https://doi.org/10.1080/10406638.2021.1980060 doi: 10.1080/10406638.2021.1980060 |
[49] | M. M. Acholi, O. A. AbuGhneim, H. Al-Ezeh, Metric dimension of some path related graphs, Global Journal of Pure and Applied Mathematics, 13 (2017), 149–157. |
[50] | M. F. Nadeem, M. Azeem, The fault-tolerant beacon set of hexagonal Möbius ladder network, Math. Method. Appl. Sci., 46 (2023), 9887–9901. https://doi.org/10.1002/mma.9091 doi: 10.1002/mma.9091 |
[51] | X. Zhang, M. T. A. Kanwal, M. Azeem, M. K. Jamil, M. Mukhtar, Finite vertex-based resolvability of supramolecular chain in dialkyltin, Main Group Met. Chem., 45 (2022), 255–264. https://doi.org/10.1515/mgmc-2022-0027 doi: 10.1515/mgmc-2022-0027 |
[52] | H. Raza, S. K. Sharma, M. Azeem, On domatic number of some rotationally-symmetric graphs, J. Math., 2023 (2023), 3816772. https://doi.org/10.1155/2023/3816772 doi: 10.1155/2023/3816772 |
[53] | H. Raza, S. Hayat, X.-F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010 |
[54] | H. Raza, S. Hayat, M. Imran, X.-F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. https://doi.org/10.3390/math7010078 doi: 10.3390/math7010078 |
[55] | H. Raza, S. Hayat, X.-F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. https://doi.org/10.1007/s12190-018-01225-y doi: 10.1007/s12190-018-01225-y |
[56] | H. M. A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, J.-B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci., 796 (2019), 114–128. https://doi.org/10.1016/j.tcs.2019.08.032 doi: 10.1016/j.tcs.2019.08.032 |
[57] | S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, M. K. Siddiqui, Fault-tolerant metric dimension of interconnection networks, IEEE Access, 8 (2020), 145435–145445. https://doi.org/10.1109/ACCESS.2020.3014883 doi: 10.1109/ACCESS.2020.3014883 |