Research article

Fermat's and Catalan's equations over $ M_2(\mathbb{Z}) $

  • Received: 01 August 2022 Revised: 21 September 2022 Accepted: 23 September 2022 Published: 13 October 2022
  • MSC : 15A24, 11D41, 11D61

  • Let $ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2\left(\mathbb{Z}\right) $ be a given matrix such that $ bc\neq0 $ and let $ C(A) = \{B\in M_2(\mathbb{Z}): AB = BA\} $. In this paper, we give a necessary and sufficient condition for the solvability of the matrix equation $ uX^i+vY^j = wZ^k, \, i, \, j, \, k\in\mathbb{N}, \, X, \, Y, \, Z\in C(A) $, where $ u, \, v, \, w $ are given nonzero integers such that $ \gcd\left(u, \, v, \, w\right) = 1 $. From this, we get a necessary and sufficient condition for the solvability of the Fermat's matrix equation in $ C(A) $. Moreover, we show that the solvability of the Catalan's matrix equation in $ M_2\left(\mathbb{Z}\right) $ can be reduced to the solvability of the Catalan's matrix equation in $ C(A) $, and finally to the solvability of the Catalan's equation in quadratic fields.

    Citation: Hongjian Li, Pingzhi Yuan. Fermat's and Catalan's equations over $ M_2(\mathbb{Z}) $[J]. AIMS Mathematics, 2023, 8(1): 977-996. doi: 10.3934/math.2023047

    Related Papers:

  • Let $ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2\left(\mathbb{Z}\right) $ be a given matrix such that $ bc\neq0 $ and let $ C(A) = \{B\in M_2(\mathbb{Z}): AB = BA\} $. In this paper, we give a necessary and sufficient condition for the solvability of the matrix equation $ uX^i+vY^j = wZ^k, \, i, \, j, \, k\in\mathbb{N}, \, X, \, Y, \, Z\in C(A) $, where $ u, \, v, \, w $ are given nonzero integers such that $ \gcd\left(u, \, v, \, w\right) = 1 $. From this, we get a necessary and sufficient condition for the solvability of the Fermat's matrix equation in $ C(A) $. Moreover, we show that the solvability of the Catalan's matrix equation in $ M_2\left(\mathbb{Z}\right) $ can be reduced to the solvability of the Catalan's matrix equation in $ C(A) $, and finally to the solvability of the Catalan's equation in quadratic fields.



    加载中


    [1] A. Aigner, Über die Möglichkeit von $x^4+y^4 = z^4$ in quadratischen Körpern, Jahresber. Dtsch. Math.-Ver., 43 (1934), 226–229. Available from: http://eudml.org/doc/145998.
    [2] A. Aigner, Die Unmöglichkeit von $x^6+y^6 = z^6$ und $x^9+y^9 = z^9$ in quadratischen Körpern, Monatsh. Math., 61 (1957), 147–150. https://doi.org/10.1007/BF01641485 doi: 10.1007/BF01641485
    [3] W. Burnside, On the rational solutions of the equation $x^3+y^3+z^3 = 0$ in quadratic fields, Proc. London Math. Soc., 14 (1915), 1–4. https://doi.org/10.1112/plms/s2_14.1.1 doi: 10.1112/plms/s2_14.1.1
    [4] E. Catalan, Note extraite d'une lettre adressée à l'éditeur par Mr. E. Catalan, Répétiteur à l'école polytechnique de Paris (French), J. Reine Angew. Math., 27 (1844), 192. https://doi.org/10.1515/crll.1844.27.192 doi: 10.1515/crll.1844.27.192
    [5] M. T. Chien, J. Meng, Fermat's equation over 2-by-2 matrices, Bull. Korean Math. Soc., 58 (2021), 609–616. https://doi.org/10.4134/BKMS.b200403 doi: 10.4134/BKMS.b200403
    [6] N. Freitas, S. Siksek, Fermat's last theorem over some small real quadratic fields, Algebr. Number Theory, 9 (2015), 875–895. https://doi.org/10.2140/ant.2015.9.875 doi: 10.2140/ant.2015.9.875
    [7] A. Grytczuk, On Fermat's equation in the set of integral $2\times2$ matrices, Period. Math. Hung., 30 (1995), 67–72. https://doi.org/10.1007/BF01876927 doi: 10.1007/BF01876927
    [8] A. Grytczuk, I. Kurzydlo, Note on the matrix Fermat's equation, Notes Number Theory, 17 (2011), 4–11. Available from: https://nntdm.net/volume-17-2011/number-2/04-11/.
    [9] F. Jarvis, P. Meekin, The Fermat equation over $\mathbb{Q}\left(\sqrt{2}\right)$, J. Number Theory, 109 (2004), 182–196. https://doi.org/10.1016/j.jnt.2004.06.006 doi: 10.1016/j.jnt.2004.06.006
    [10] I. Kaddoura, B. Mourad, On an infinite number of solutions to the Diophantine equation $x^n+y^p = z^q$ over the square integer matrices, preprint, arXiv: 1808.09956, 2018. https://doi.org/10.48550/arXiv.1808.09956
    [11] A. Khazanov, Fermat's equation in matrices, Serdica Math. J., 21 (1995), 19–40.
    [12] M. Le, C. Li, On Fermat's equation in integral $2\times2$ matrices, Period. Math. Hungar., 31 (1995), 219–222. https://doi.org/10.1007/BF01882197 doi: 10.1007/BF01882197
    [13] P. Mihǎilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167–195. https://doi.org/10.1515/crll.2004.048 doi: 10.1515/crll.2004.048
    [14] H. Qin, Fermat's problem and Goldbach's problem over $M_n\mathbb{Z}$, Linear Algebra Appl., 236 (1996), 131–135. https://doi.org/10.1016/0024-3795(94)00137-5 doi: 10.1016/0024-3795(94)00137-5
    [15] L. N. Vaserstein, Noncommutative number theory, Contemp. Math., 83 (1989), 445–449. https://doi.org/10.1090/conm/083/991989
    [16] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. Math., 141 (1995), 443–551. https://doi.org/10.2307/2118559 doi: 10.2307/2118559
    [17] X. Zhong, The solution of $2\times2$ matrices equations $A^n = kE$ with integer entries (in Chinese), Coll. Math., 22 (2006), 71–74. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GKSX200604016&DbName=CJFQ2006.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1157) PDF downloads(82) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog