Let $ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2\left(\mathbb{Z}\right) $ be a given matrix such that $ bc\neq0 $ and let $ C(A) = \{B\in M_2(\mathbb{Z}): AB = BA\} $. In this paper, we give a necessary and sufficient condition for the solvability of the matrix equation $ uX^i+vY^j = wZ^k, \, i, \, j, \, k\in\mathbb{N}, \, X, \, Y, \, Z\in C(A) $, where $ u, \, v, \, w $ are given nonzero integers such that $ \gcd\left(u, \, v, \, w\right) = 1 $. From this, we get a necessary and sufficient condition for the solvability of the Fermat's matrix equation in $ C(A) $. Moreover, we show that the solvability of the Catalan's matrix equation in $ M_2\left(\mathbb{Z}\right) $ can be reduced to the solvability of the Catalan's matrix equation in $ C(A) $, and finally to the solvability of the Catalan's equation in quadratic fields.
Citation: Hongjian Li, Pingzhi Yuan. Fermat's and Catalan's equations over $ M_2(\mathbb{Z}) $[J]. AIMS Mathematics, 2023, 8(1): 977-996. doi: 10.3934/math.2023047
Let $ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2\left(\mathbb{Z}\right) $ be a given matrix such that $ bc\neq0 $ and let $ C(A) = \{B\in M_2(\mathbb{Z}): AB = BA\} $. In this paper, we give a necessary and sufficient condition for the solvability of the matrix equation $ uX^i+vY^j = wZ^k, \, i, \, j, \, k\in\mathbb{N}, \, X, \, Y, \, Z\in C(A) $, where $ u, \, v, \, w $ are given nonzero integers such that $ \gcd\left(u, \, v, \, w\right) = 1 $. From this, we get a necessary and sufficient condition for the solvability of the Fermat's matrix equation in $ C(A) $. Moreover, we show that the solvability of the Catalan's matrix equation in $ M_2\left(\mathbb{Z}\right) $ can be reduced to the solvability of the Catalan's matrix equation in $ C(A) $, and finally to the solvability of the Catalan's equation in quadratic fields.
[1] | A. Aigner, Über die Möglichkeit von $x^4+y^4 = z^4$ in quadratischen Körpern, Jahresber. Dtsch. Math.-Ver., 43 (1934), 226–229. Available from: http://eudml.org/doc/145998. |
[2] | A. Aigner, Die Unmöglichkeit von $x^6+y^6 = z^6$ und $x^9+y^9 = z^9$ in quadratischen Körpern, Monatsh. Math., 61 (1957), 147–150. https://doi.org/10.1007/BF01641485 doi: 10.1007/BF01641485 |
[3] | W. Burnside, On the rational solutions of the equation $x^3+y^3+z^3 = 0$ in quadratic fields, Proc. London Math. Soc., 14 (1915), 1–4. https://doi.org/10.1112/plms/s2_14.1.1 doi: 10.1112/plms/s2_14.1.1 |
[4] | E. Catalan, Note extraite d'une lettre adressée à l'éditeur par Mr. E. Catalan, Répétiteur à l'école polytechnique de Paris (French), J. Reine Angew. Math., 27 (1844), 192. https://doi.org/10.1515/crll.1844.27.192 doi: 10.1515/crll.1844.27.192 |
[5] | M. T. Chien, J. Meng, Fermat's equation over 2-by-2 matrices, Bull. Korean Math. Soc., 58 (2021), 609–616. https://doi.org/10.4134/BKMS.b200403 doi: 10.4134/BKMS.b200403 |
[6] | N. Freitas, S. Siksek, Fermat's last theorem over some small real quadratic fields, Algebr. Number Theory, 9 (2015), 875–895. https://doi.org/10.2140/ant.2015.9.875 doi: 10.2140/ant.2015.9.875 |
[7] | A. Grytczuk, On Fermat's equation in the set of integral $2\times2$ matrices, Period. Math. Hung., 30 (1995), 67–72. https://doi.org/10.1007/BF01876927 doi: 10.1007/BF01876927 |
[8] | A. Grytczuk, I. Kurzydlo, Note on the matrix Fermat's equation, Notes Number Theory, 17 (2011), 4–11. Available from: https://nntdm.net/volume-17-2011/number-2/04-11/. |
[9] | F. Jarvis, P. Meekin, The Fermat equation over $\mathbb{Q}\left(\sqrt{2}\right)$, J. Number Theory, 109 (2004), 182–196. https://doi.org/10.1016/j.jnt.2004.06.006 doi: 10.1016/j.jnt.2004.06.006 |
[10] | I. Kaddoura, B. Mourad, On an infinite number of solutions to the Diophantine equation $x^n+y^p = z^q$ over the square integer matrices, preprint, arXiv: 1808.09956, 2018. https://doi.org/10.48550/arXiv.1808.09956 |
[11] | A. Khazanov, Fermat's equation in matrices, Serdica Math. J., 21 (1995), 19–40. |
[12] | M. Le, C. Li, On Fermat's equation in integral $2\times2$ matrices, Period. Math. Hungar., 31 (1995), 219–222. https://doi.org/10.1007/BF01882197 doi: 10.1007/BF01882197 |
[13] | P. Mihǎilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167–195. https://doi.org/10.1515/crll.2004.048 doi: 10.1515/crll.2004.048 |
[14] | H. Qin, Fermat's problem and Goldbach's problem over $M_n\mathbb{Z}$, Linear Algebra Appl., 236 (1996), 131–135. https://doi.org/10.1016/0024-3795(94)00137-5 doi: 10.1016/0024-3795(94)00137-5 |
[15] | L. N. Vaserstein, Noncommutative number theory, Contemp. Math., 83 (1989), 445–449. https://doi.org/10.1090/conm/083/991989 |
[16] | A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. Math., 141 (1995), 443–551. https://doi.org/10.2307/2118559 doi: 10.2307/2118559 |
[17] | X. Zhong, The solution of $2\times2$ matrices equations $A^n = kE$ with integer entries (in Chinese), Coll. Math., 22 (2006), 71–74. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GKSX200604016&DbName=CJFQ2006. |