In computational mathematics, the comparison of convergence rate in different iterative methods is an important concept from theoretical point of view. The importance of this comparison is relevant for researchers who want to discover which one of these iterations converges to the fixed point more rapidly. In this article, we study the different numerical methods to calculate fixed point in digital metric spaces, introduce a new k-step iterative process and conduct an analysis on the strong convergence, stability and data dependence of the mentioned scheme. Some illustrative examples are given to show that this iteration process converges faster.
Citation: Thongchai Botmart, Aasma Shaheen, Afshan Batool, Sina Etemad, Shahram Rezapour. A novel scheme of $ k $-step iterations in digital metric spaces[J]. AIMS Mathematics, 2023, 8(1): 873-886. doi: 10.3934/math.2023042
In computational mathematics, the comparison of convergence rate in different iterative methods is an important concept from theoretical point of view. The importance of this comparison is relevant for researchers who want to discover which one of these iterations converges to the fixed point more rapidly. In this article, we study the different numerical methods to calculate fixed point in digital metric spaces, introduce a new k-step iterative process and conduct an analysis on the strong convergence, stability and data dependence of the mentioned scheme. Some illustrative examples are given to show that this iteration process converges faster.
[1] | S. Etemad, S. Rezapour, On the existence of solutions for fractional boundary value problems on the ethane graph, Adv. Differ. Equ., 2020 (2020), 276. https://doi.org/10.1186/s13662-020-02736-4 doi: 10.1186/s13662-020-02736-4 |
[2] | A. Alsaedi, M. Alsulami, H. M. Srivastava, B. Ahmad, S. K. Ntouyas, Existence theory for nonlinear third-order ordinary differential equations with nonlocal multi-point and multi-strip boundary conditions, Symmetry, 11 (2019), 281. https://doi.org/10.3390/sym11020281 doi: 10.3390/sym11020281 |
[3] | S. Rezapour, S. K. Ntouyas, M. Q. Iqbal, A. Hussain, S. Etemad, J. Tariboon, An analytical survey on the solutions of the generalized double-order $\varphi$-integrodifferential equation, J. Funct. Space., 2021 (2021). https://doi.org/10.1155/2021/6667757 doi: 10.1155/2021/6667757 |
[4] | C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 1–28. https://doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z |
[5] | D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0 |
[6] | S. T. M. Thabet, S. Etemad, S. Rezapour, On a new structure of the pantograph inclusion problem in the Caputo conformable setting, Bound. Value Probl., 2020 (2020), 1–21. https://doi.org/10.1186/s13661-020-01468-4 doi: 10.1186/s13661-020-01468-4 |
[7] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[8] | S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. https://doi.org/10.3906/mat-2010-70 doi: 10.3906/mat-2010-70 |
[9] | D. Baleanu, H. Mohammadi, S. Rezapour, Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020). https://doi.org/10.1186/s13662-020-02544-w doi: 10.1186/s13662-020-02544-w |
[10] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[11] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Soliton. Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511 |
[12] | S. Rezapour, A. Imran, A. Hussain, F. Martinez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. https://doi.org/10.3390/sym13030469 doi: 10.3390/sym13030469 |
[13] | I. Karaca, O. Ege, Some results on simplicial homology groups of 2D digital images, Int. J. Inform. Computer Sci., 1 (2012), 198–203. |
[14] | O. Ege, I. Karaca, Lefschetz fixed point theorem for digital images, Fixed Point Theory Appl., 2013 (2013), 1–13. https://doi.org/10.1186/1687-1812-2013-253 doi: 10.1186/1687-1812-2013-253 |
[15] | O. Ege, I. Karaca, Applications of the Lefschetz number to digital images, Bull. Belg. Math. Soc. Simon. Stevin, 21 (2014), 823–839. https://doi.org/10.36045/bbms/1420071856 doi: 10.36045/bbms/1420071856 |
[16] | O. Ege, I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl., 8 (2015), 237–245. http://dx.doi.org/10.22436/jnsa.008.03.08 doi: 10.22436/jnsa.008.03.08 |
[17] | M. A. Krasnoselskii, Two remarks on the method of successive approximations, Usp. Mat. Nauk, 10 (1955), 123–127. |
[18] | W. R. Mann, Mean value methods in iteration, P. Am. Math. Soc., 4 (1953), 506–510. http://dx.doi.org/10.2307/2031845 doi: 10.2307/2031845 |
[19] | S. Ishikawa, Fixed points by a new iteration method, P. Am. Math. Soc., 44 (1974), 147–150. |
[20] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[21] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[22] | F. Gursoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, Funct. Anal., 1 (2014). https://doi.org/10.48550/arXiv.1403.2546 doi: 10.48550/arXiv.1403.2546 |
[23] | B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065 |
[24] | B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. https://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T |
[25] | K. Ullah, M. Arshad, New three-step iteration process and fixed point approximation in Banach space, J. Linear Topol. Algebra, 7 (2018), 87–100. |
[26] | V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl., 2004 (2004), 97–105. https://doi.org/10.1155/S1687182004311058 doi: 10.1155/S1687182004311058 |