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Abstract: In computational mathematics, the comparison of convergence rate in different iterative
methods is an important concept from theoretical point of view. The importance of this comparison
is relevant for researchers who want to discover which one of these iterations converges to the fixed
point more rapidly. In this article, we study the different numerical methods to calculate fixed point
in digital metric spaces, introduce a new k-step iterative process and conduct an analysis on the strong
convergence, stability and data dependence of the mentioned scheme. Some illustrative examples are
given to show that this iteration process converges faster.
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1. Introduction

Fixed point theory is considered as one of the most important fields of pure mathematics and is
observed in different aspects of applied mathematics, particulary in existence theory and mathematical
modeling [1–12]. Recently, the researchers have tried touse ideas of digital images based on the
Euclidean topology, along with real analysis in relation to the existing metrics and fixed points. While
the fundamental and main motivation of a digital metric space is taken from a Euclidean metric space.
A digital metric space is denoted by (E, µ, ρ), where E denotes a family of lattice points, µ is a
Euclidean metric, and ρ specifies an adjacency relation on E, so that makes (E, ρ) as a graph.
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In 1922, theory of fixed points was started by introducing the Banach contraction principle stated by
S. Banach, which guarantees the existence of unique fixed points for a contraction. For digital images,
Ege and Karaca [13–16] introduced a digital metric space and stated a well-known Banach contraction
principle for the existence of unique fixed points. However, when the existence results are established
for fixed points of a function, it is not a simple work to find the value of those fixed points. Therefore,
application of iterative processes is a logical method to compute these fixed points. Until now, a vast
range of iterative processes has been defined. As we know, the Picard iteration process is used in the
famous Banach contraction principle to approximate fixed points of the given contractions. But this
iterative method may fail to converge in the case of nonexpansive mappings, even if T has exactly one
fixed point. This iterative scheme is defined as

T xn = xn+1.

Krasnosel’skii [17] established and confirmed that the Mann iterative scheme [18] can give an
approximation of the fixed points for an existing nonexpansive function. In such an iterative scheme,
by considering an arbitrary x◦ ∈ X, the sequence {xn} is generated as

xn+1 = (1 − αn)xn + αnT xn, ∀ n ≥ 0,

where αn ∈ [0, 1].
Ishikawa [19] extended an iterative algorithm in 1974 for approximation of the fixed point, in which

{xn} is given iteratively by starting from x0 ∈ X as

xn+1 = (1 − αn)xn + αnTyn,

yn = (1 − βn)xn + βnT xn,

for all n ≥ 0 with αn, βn ∈ [0, 1].
These two iterative methods (i.e., the Mann and Ishikawa algorithms) have been investigated by

many researchers to approximate the fixed points. Another iterative technique was proposed by
Noor [20], for initial point x0 ∈ X, and {xn} has the form as

xn+1 = (1 − αn)xn + αnTyn,

yn = (1 − βn)xn + βnTzn,

zn = (1 − γn)xn + γnT xn, (1.1)

for all n ≥ 0 with αn, βn, γn ∈ [0, 1].
In 2007, Agarwal et al. [21] suggested another iterative scheme known as Agarwal iteration

algorithm or S -iteration process: for arbitrary x0 ∈ X, {xn} is defined by

xn+1 = (1 − αn)T xn + αnTyn,

yn = (1 − βn)xn + βnT xn, n ≥ 0,

with 0 ≤ αn, βn ≤ 1. They showed that, for contraction mappings, the mentioned algorithm converges
faster than Mann algorithm.

AIMS Mathematics Volume 8, Issue 1, 873–886.



875

A few years later, Gursoy and Karakaya in [22] presented a new combined algorithm entitled the
Picard S -iteration algorithm, in which by taking x0 ∈ X arbitrarily, {xn} is defined by

xn+1 = Tyn,

yn = (1 − αn)T xn + αnTzn,

zn = (1 − βn)xn + βnT xn, n ≥ 0,

with αn, βn, γn ∈ [0, 1]. These authors proved that this combined iterative method can be used for
approximation of fixed points of contractions. Moreover, by providing an example, they guaranteed
that the Picard S -iteration algorithm converges faster than all of four previous algorithms, i.e., Mann,
Ishikawa, Noor and S schemes.

After that, Thakur et al. [23] dealt with another iteration algorithm entitled Thakur new iteration
process, by taking arbitrary x0 ∈ X and

xn+1 = Tyn,

yn = T ((1 − αn)xn + αnzn),

zn = (1 − βn)xn + βnT xn, n ≥ 0,

with αn, βn, γn ∈ [0, 1]. By giving a numerical example in relation to the Suzuki generalized
nonexpansive mappings, Thakur et al. confirmed that their iterative algorithm is faster than Picard,
Mann, Ishikawa, Agarwal and Noor algorithms.

Again Thakur et al. [24] generalized the following iterative procedure in 2016, in which {xn} is
formulated from arbitrary point x0 ∈ X by

xn+1 = (1 − αn)Tzn + αnTyn,

yn = (1 − βn)zn + βnTzn,

zn = (1 − γn)xn + γnT xn, n ≥ 0,

with αn, βn, γn ∈ [0, 1].
Ullah et al. [25] introduced a new kind of iterative algorithm called the k?-iteration algorithm in

2018. It converges faster than Thakur’s combined algorithm. In this scheme, {xn} is defined by

xn+1 = Tyn,

yn = T ((1 − αn)zn + αnTzn),

zn = (1 − βn)xn + βnT xn, n ≥ 0,

by taking x0 ∈ X arbitrarily and αn, βn, γn ∈ [0, 1]. With the aid of an example, Ullah and Arshad
confirmed that k?-iteration scheme is faster than S and Picard S -iteration algorithms.

Our main aim in this article is to derive a novel and more rapid iteration algorithm than k?-iteration
scheme in the framework of a digital metric space. Moreover, we analyze the convergence rate for
such an iterative scheme in the context of digital metric spaces. Along with these, we establish that
our suggested algorithm is stable analytically. Finally, by providing some examples, from a numerical
point of view, we shall compare the convergence rate of our iterative scheme with other well-known
iterative algorithms.
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2. Preliminaries

In this section, to prove the main results, we need some definitions and proposition. The following
lemmas will help us to investigate our problem in this specific structure.

Lemma 2.1. [26] Let c ∈ R such that 0 ≤ c < 1, and {ζn} be a sequence of positive numbers with
lim

n−→∞
ζn = 0 for all n ≥ 0. Then for every sequence {κn} of positive numbers satisfying

κn+1 ≤ c(κn) + ζn,

we have lim
n→∞

κn = 0.

Definition 2.2. [26] Let {an} ⊆ R and {bn} ⊆ R such that an → a and bn → b as n → ∞. Then {an}

converges faster than {bn} whenever

lim
n→∞
|
an − a
bn − b

| = 0.

Definition 2.3. [26] Consider {κn} and {νn} as two iterations of fixed points that tend to some fixed
point p on a metric space (X, d) so that we have the following error estimates

d(κn, p) ≤ an, d(νn, p) ≤ bn,

where {an} ⊆ N and {bn} ⊆ N converge to zero. If {an} converges faster than {bn}, then we say that {κn}

tends to p more rapid than {νn}.

Definition 2.4. Let (E, µ, ρ) be a digital metric space and D : E × [0, 1] → E be a map such that
D(p, α+ β) = D(p, α) + D(p, β) and D(p, 1) = p. We say that a digital metric space have linear digital
structure if for all p, q, r, s ∈ E and α, β ∈ [0, 1],

µ(D(p, α) + D(q, β),D(r, α) + D(s, β)) ≤ αµ(p, r) + βµ(q, s). (2.1)

Definition 2.5. Let (E, µ, ρ) be a digital metric space, T a self-map on E, and FT = {p ∈ E|T (p) = p} a
set of fixed points of T . Moreover, consider {xn} as a sequence produced by an iteration scheme under
T given as

xn+1 = fT,αn(xn), (2.2)

where x0 ∈ X is considered as the initial approximation, αn ∈ [0, 1] and f is a function involving the
digital structure. Let {xn} tends to the fixed point p of T and εn = µ(xn+1, fT,αn(xn)), n ≥ 0. In this
case, we say that the above iteration algorithm is T-stable (or stable with respect to T) if and only if
lim

n−→∞
εn = 0 gives lim

n−→∞
xn = 0.

Now, in a digital metric space, we can rewrite the Mann iteration as:

xn+1 = D(xn, (1 − αn)) + D(T (xn), αn), αn ∈ [0, 1].

and the Ishikawa iteration as:

xn+1 = D(xn, (1 − αn)) + D(T (yn), αn), αn ∈ [0, 1],
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yn = D(xn, (1 − βn)) + D(T (xn), βn), βn ∈ [0, 1].

Also, we can write the S -iteration process as follows:

xn+1 = D(T xn, (1 − αn)) + D(T (yn), αn), αn ∈ [0, 1],

yn = D(xn, (1 − βn)) + D(T (xn), βn), βn ∈ [0, 1],

and, the Picard S -iteration process as follows

xn+1 = T (yn),

yn = D(T xn, (1 − αn)) + D(T (zn), αn), αn ∈ [0, 1],

zn = D(xn, (1 − βn)) + D(T (xn), βn), βn ∈ [0, 1].

Also, in a digital metric space, the k?-iteration algorithm introduced by Ullah et al. can be written as:

xn+1 = T (yn),

yn = T (D(zn, (1 − αn)) + D(T (zn), αn)), αn ∈ [0, 1],

zn = D(xn, (1 − βn)) + D(T (xn), βn), βn ∈ [0, 1].

3. Gerneralized k?-iteration process

Motivated by this fact that three-step iterative schemes give better approximation than two-step ones
and also two-step iterative schemes give better approximations than one-step schemes, we present a
generalized k-step iterative algorithm. Let K , ∅ be a set in the digital metric space (E, µ, ρ) with
linear digital structure so that E ⊂ Zn, where n ∈ N and ρ stands for an adjacency relation between
the members of E. Moreover, let T : K → K be an arbitrary map. For the real sequences {α(1)

n }
∞
n=0,

{α(2)
n }
∞
n=0, {α(3)

n }
∞
n=0, . . . , {α

(k)
n }
∞
n=0 ∈ [0, 1], we define a generalized k-step iteration (k?) as

x(1)
n+1 = T x(2)

n ,

x(2)
n = T ((1 − α(1)

n )x(3)
n + α(1)

n T x(3)
n ),

x(3)
n = T ((1 − α(2)

n )x(4)
n + α(2)

n T x(4)
n ),

x(4)
n = T ((1 − α(3)

n )x(5)
n + α(3)

n T x(5)
n ),

...

...

...

x(k−1)
n = T ((1 − α(k−2)

n )x(k)
n + α(k−2)

n T x(k)
n ),

x(k)
n = (1 − α(k−1)

n )x(1)
n + α(k−1)

n T x(1)
n . (3.1)

By setting k = 1, we obtain the Picard iteration (1.1). k = 3 gives the k?-iteration introduced by Ullah
and Arshad. Now in digital metric spaces, we can represent (3.1) as

x(1)
n+1 = T x(2)

n ,

AIMS Mathematics Volume 8, Issue 1, 873–886.



878

x(2)
n = T (D(x(3)

n , (1 − α(1)
n )) + D(T x(3)

n ), α(1)
n )),

x(3)
n = T (D(x(4)

n , (1 − α(2)
n )) + D(T x(4)

n , α(2)
n )),

...

...

...

x(k)
n = D(x(1)

n , (1 − α(k−1)
n )) + D(T x(1)

n , α(k−1)
n ). (3.2)

4. Main results

We prove the main results in two subsections.

4.1. Convergence and stability results of gerneralized k?-iteration

Theorem 4.1. Let (E, µ, ρ) be a digital metric space having the linear digital structure D and T :
E −→ E be a contraction with F(T ) , φ. Then, for x0 ∈ E, {xn} given by (3.2), tends to the fixed point
of T .

Proof. Let {xn} ⊆ E and p ∈ F(T ) such that

µ(x(1)
n+1, p) = µ(T x(2)

n ,T p) ≤ δµ(x(2)
n , p).

Now, we have

µ(x(2)
n , p) = µ(T [D(x(3)

n , 1 − α(1)
n ) + D(T x(3)

n , α(1)
n )],T p)

≤ δµ(D(x(3)
n , 1 − α(1)

n ) + D(T x(3)
n , α(1)

n ), p)

= δ[µ(D(x(3)
n , 1 − α(1)

n ) + D(T x(3)
n , α(1)

n ),D(p, 1))]

= δ[µ(D(x(3)
n , (1 − α(1)

n ) + D(T x(3)
n ), α(1)

n )),D(p, (1 − α(1)
n + (α(1)

n )]

≤ δ[µ(D(x(3)
n , (1 − α(1)

n ) + D(T x(3)
n ), α(1)

n )),D(p, (1 − α(1)
n ) + D(p, α(1)

n )].

Using the linear structure property, we get

µ(x(2)
n , p) ≤ δ[(1 − (1 − δ)α(1)

n ]µ(x(3)
n , p). (4.1)

Similarly

µ(x(3)
n , p) ≤ δ[(1 − (1 − δ)α(2)

n ]µ(x(4)
n , p), (4.2)

µ(x(k−1)
n , p) ≤ δ[(1 − (1 − δ)α(k−2)

n ]µ(x(k)
n , p), (4.3)

and for the final term µ(x(k)
n , p), it becomes

µ(x(k)
n , p) ≤ [(1 − (1 − δ)α(k−1)

n )]µ(x(1)
n , p). (4.4)
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Using the above equations, we have

µ(x(1)
n+1, p) ≤ δk−1 [1 − (1 − δ)α(1)

n ]

× [1 − (1 − δ)α(2)
n )] [1 − (1 − δ)α(3)

n ]...[1 − (1 − δ)α(k−1)
n ]µ(x(1)

n , p),

and so

µ(x(1)
n+1, p) ≤ δk−1

k∏
i=1

[1 − (1 − δ)α(i)
n ]µ(x(1)

n , p). (4.5)

Now for i = 1, 2, 3..., k,

[1 − (1 − δ)α(k)
n ] ≤ 1

⇒δk−1
k−1∏
i=1

[1 − (1 − δ)α(i)
n ] ≤ 1.

Hence, (4.5) yields limn→∞ µ(x(1)
n , p) = 0. Therefore, sequence {xn} converges to p. �

Next, we establish that the gerneralized k?-iteration algorithm converges more rapid than all
aforesaid iterative algorithms and it is T -stable.

Theorem 4.2. Let (E, µ, ρ) be a digital metric space having the linear digital structure D and T :
E −→ E be a contraction. Let T has a fixed point p. For x0 ∈ E, {xn} defined iteratively by (3.2) be the
gerneralized k? iterative process, where α(k)

n ∈ [0, 1] such that α(k)
n < α < 1. Then, the k?-iteration is

T-stable.

Proof. Suppose that {xn} ⊆ E is defined by (3.2) and εn = µ(x(1)
n+1,T x(2)

n ), and lim
n→∞

εn = 0. Then, we
show lim

n→∞
xn = p. We have

µ(x(1)
n+1, p) ≤ µ(x(1)

n+1,T x(2)
n ) + µ(T x(2)

n , p)

= µ(T x(2)
n ,T p) + εn

≤ δµ(x(2)
n , p) + εn.

Using (4.1), we get
µ(x(1)

n+1, p) ≤ δ2[(1 − (1 − δ)α(1)
n ]µ(x(3)

n , p) + εn.

Similarly, using (4.2) and so on to (4.4), we get

µ(x(1)
n+1, p) ≤ δk−1

k−1∏
i=1

[1 − (1 − δ)α(i)
n ]µ(x(1)

n , p) + εn.

Therefore, since 0 < δk−1∏k−1
i=1 [1−(1−δ)α(i)

n ] < 1, by applying Lemma 2.1, we get limn−→∞ µ(xn, p) =

0, i.e., limn−→∞ xn = p.
Conversely, let limn−→∞ xn = p. Then we have to prove that limn−→∞ εn = 0.
We have

εn = µ(x(1)
n+1,T x(2)

n )
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≤ µ(x(1)
n+1, p) + µ(p,T x(2)

n )

≤ µ(x(1)
n+1, p) + δµ(p, x(2)

n ).

Using (4.1), we get
εn ≤ µ(x(1)

n+1, p) + δ2[(1 − (1 − δ)α(1)
n ]µ(x(3)

n , p).

Using (4.2), (4.3) and (4.4), we finally have

εn ≤ µ(x(1)
n+1, p) + δk−1

k−1∏
i=1

[1 − (1 − δ)α(i)
n ]µ(x(1)

n , p)) −→ 0,

as n −→ ∞. �

4.2. Convergence rate

Theorem 4.3. Let (E, µ, ρ) be a digital metric space having the linear digital structure D and T :
E −→ E be a contraction. Let T has a fixed point p. For x0 ∈ E, {xn} defined iteratively by (3.2) be the
gerneralized k? iterative process, where α(k)

n ∈ [0, 1] such that α(k)
n < α < 1. Then, the gerneralized k?

iteration converges to p faster than the Ullah and Arshad iteration. Also, it converges more rapid than
the explicit Mann and Ishikawa algorithms.

Proof. For the Ullah and Arshad k?-iteration process, we have

µ(x(1)
n+1, p) = µ(T x(2)

n ,T p) ≤ δµ(x(2)
n , p),

µ(x(2)
n , p) ≤ δ[(1 − (1 − δ)α(1)

n ]µ(x(3)
n , p).

Similarly
µ(x(3)

n , p) ≤ [(1 − (1 − δ)α(2)
n ]µ(x(4)

n , p).

Using the above equations, we have

µ(x(1)
n+1, p) ≤ δ2 [1 − (1 − δ)α(1)

n ] [1 − (1 − δ)α(2)
n )] [1 − (1 − δ)α(3)

n ]µ(x(1)
n , p),

µ(x(1)
n+1, p) ≤ δ2

3∏
i=1

[1 − (1 − δ)α(i)
n ]µ(x(1)

n , p), (4.6)

and for the gerneralized k? iterative process, we have

µ(x(1)
n+1, p) ≤ δk−1

k∏
i=1

[1 − (1 − δ)α(i)
n ]µ(x(1)

n , p). (4.7)

Now

δ2
3∏

i=1

[1 − (1 − δ)α(i)
n ] < δk−1

k∏
i=1

[1 − (1 − δ)α(i)
n ]. (4.8)
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By considering the Berinde’s definitions, (2.1) and (2.2), inequalities (4.6), (4.7) and (4.8) yield that
gerneralized k? iteration converges faster than the Ullah and Arshad k? iteration. Now for the explicite
Mann iteration, we get

µ(x(1)
n+1, p) = µ(D(x(1)

n , 1 − α(1)
n ) + D(T x(1)

n , α(1)
n ),D(p, 1))

= µ(D(x(1)
n , (1 − α(1)

n ) + D(T x(1)
n ), α(1)

n )),D(p, (1 − α(1)
n + (α(1)

n ))

≤ δ[µ(D(x(1)
n , (1 − α(1)

n ) + D(T x(1)
n ), α(1)

n )),D(p, (1 − α(1)
n ) + D(p, α(1)

n )].

Using the linear structure property, we get

µ(x(1)
n+1, p) ≤ [(1 − (1 − δ)α(1)

n ]µ(x(1)
n , p). (4.9)

Similarly, for the explicit Ishikawa iteration, we have

µ(x(1)
n+1, p) ≤ [(1 − (1 − δ)α(1)

n ((1 − (1 − δ)α(2)
n )]µ(x(1)

n , p). (4.10)

Now, the inequalities (4.7), (4.9) and (4.10) follow that the gerneralized k? iteration converges more
rapid than the explicit Mann and Ishikawa algorithms. �

In this position, we design an example to compare the convergence rate of our iterative algorithm
with three other schemes such as Mann, Picard-S, and Noor. The convergence comparison is presented
in some tables.

Example 4.4. Consider X = {0, 1, 2, ...} and the digital metric space (X, µ, ρ) equipped with the digital
metric given by d(x, y) = |x − y|. For T : (X, µ, ρ)→ (X, µ, ρ), define

T x =
x
2

+ 3,

and α(1)
n = α(2)

n = α(3)
n ... = α(k)

n = 5
6 , n = 1, 2, 3, . . . . From Table 1, we can observe that all the iterative

algorithms converge to p? = 6. Evidently, our suggested iterative algorithm needs the least number of
iterations as compared to other existing algorithms.

Table 1 is presented to show the number of iterations required by different schemes. From Tables
1–3, it is clear that our purposed method is more rapidly convergent compared to other scehmes.

Table 1. Number of iterations attaining the fixed point.

Scheme number of iterations
Mann 48

Picard-S 15
Ishikawa 32

Noor 26
Agarwal 28

K.UllahK?(k = 3) 11
k = 4 7
k = 5 6
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Table 2. Convergence comparison with other schemes w.r.t number of iterations.

xn Picard-S Noor k = 3 k = 4 k = 5
x0 0 0 0 0 0
x1 5.020833333333334 3.97569444444 5.4895833333 5.8511284722 5.9565791377
x2 5.840205439814815 5.31703116962 5.9565791377 5.9963062114 5.9996857715
x3 5.973922415525335 5.76957706707 5.9963062114 5.9999083500 5.9999977260
x4 5.995744283089204 5.92225892946 5.9996857715 5.9999977260 5.9999999835
x5 5.999305490643030 5.97377138650 5.9999732688 5.9999999436 5.9999999999
x6 5.999886659931327 5.99115087866 5.9999977260 5.9999999986 6.0000000000
x7 5.999981503530460 5.99701444575 5.9999998066 6.0000000000 .
x8 5.999996981478930 5.99899272099 5.9999999835 . .
x9 5.999999507394131 5.99966015992 5.9999999986 . .
x10 5.999999919609460 5.99988534331 5.9999999999 . .
x11 5.999999986880711 5.99996131664 6.0000000000 . .
x12 5.999999997859005 5.99998694884 . . .
x13 5.999999999650601 5.99999559674 . . .
x14 5.999999999942980 5.99999851441 . . .
x15 5.999999999990695 5.99999949879 . . .
x16 5.999999999998481 5.99999983090 . . .
x17 5.999999999999752 5.99999994295 . . .
x18 5.999999999999959 5.99999998075 . . .
x19 5.999999999999993 5.99999999351 . . .
x20 5.999999999999999 5.99999999781 . . .
x21 6.000000000000000 5.99999999926 . . .
x22 . 5.99999999975 . . .
x23 . 5.99999999992 . . .
x24 . 5.99999999997 . . .
x25 . 5.99999999999 . . .
x26 . 6.00000000000 . . .
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Table 3. Convergence comparison with other schemes w.r.t number of iterations.

xn k = 3 k = 4 k = 5
x0 10 10 10
x1 5.3670391374 5.0550582242 5.0086635272
x2 5.0075092404 5.0001551356 5.0000023967
x3 5.0001561926 5.0000005187 5.0000000007
x4 5.0000035383 5.0000000019 5.0000000000
x5 5.0000000852 5.0000000000 .
x6 5.0000000021 . .
x7 5.0000000001 . .
x8 5.0000000000 . .

Example 4.5. Consider X = {0, 1, 2, ...} and the digital metric space (X, µ, ρ) equipped with the digital
metric given by d(x, y) = |x − y|. For T : (X, µ, ρ)→ (X, µ, ρ), define

T x =
√

x2 − 8x + 40,

αn =
2

√
(7n + 9)

, βn =
1

√
(3n + 7)

, γn =
1

√
(5n + 7)

, ξn =
1

√
(3n + 11)

, where n = 1, 2, 3, . . . .

The error is defined as error = |xn − xn−1| for three different iteration schemes presented in Table 4
(graphically in Figure 1).

Figure 1. Comparison of error estimate for Iteration schemes.
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Table 4. Errors for different steps.

xn k = 3) k = 4 k = 5
x1 5.3670391374 5.0550582242 5.0086635272
x2 0.3595298970 0.0549030885 0.0086611305
x3 0.0073530478 0.0001546169 0.0000023961
x4 0.0001526543 0.0000005168 0.0000000007
x5 0.0000034532 0.0000000019 0.0000000000
x6 0.0000000830 0.0000000000 0.0000000000
x7 0.0000000021 0.0000000000 0.0000000000

5. Conclusions

In this paper, we defined a generalized and novel k-step iterative algorithms in a digital metric space.
Our results are listed as follows:

(1) The k-step iterative scheme is the general case of the Ullah and Arshad iteration and can be useful
to choose the number of steps of the iterative schemes according to our need.

(2) Every increase in the step size increases the convergence speed.

(3) The speed of iterations depends on the parameters α(1)
n , α(2)

n , α(3)
n , . . . , α(k)

n .

In the next works, we are going to investigate our iterative method in other generalized metric spaces
equipped with special contractions such as α-ψ-contractions.
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