The authors study the convergence rate of complete moment convergence for weighted sums of weakly dependent random variables without assumptions of identical distribution. Under the moment condition of $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $ for $ 0 < \gamma < \alpha $ with $ 1 < \alpha \le 2 $, we establish the complete $ \alpha $-th moment convergence theorem for weighted sums of weakly dependent cases, which improves and extends the related known results in the literature.
Citation: Haiwu Huang, Yuan Yuan, Hongguo Zeng. An extension on the rate of complete moment convergence for weighted sums of weakly dependent random variables[J]. AIMS Mathematics, 2023, 8(1): 622-632. doi: 10.3934/math.2023029
The authors study the convergence rate of complete moment convergence for weighted sums of weakly dependent random variables without assumptions of identical distribution. Under the moment condition of $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $ for $ 0 < \gamma < \alpha $ with $ 1 < \alpha \le 2 $, we establish the complete $ \alpha $-th moment convergence theorem for weighted sums of weakly dependent cases, which improves and extends the related known results in the literature.
[1] | A. Adler, A. Rosalsky, Some general strong laws for weighted sums of stochastically dominated random variables, Stoch. Anal. Appl., 5 (1987), 1–16. http://doi.org/10.1080/07362998708809104 doi: 10.1080/07362998708809104 |
[2] | A. Adler, A. Rosalsky, R. L. Taylor, Strong laws of large numbers for weighted sums of random elements in normed linear spaces, Int. J. Math. Math. Sci., 12 (1989), 507–530. http://doi.org/10.1155/s0161171289000657 doi: 10.1155/s0161171289000657 |
[3] | Z. D. Bai, P. E. Cheng, Marcinkiewicz strong laws for linear statistics, Stat. Probabil. Lett., 46 (2000), 105–112. http://doi.org/10.1016/S0167-7152(99)00093-0 doi: 10.1016/S0167-7152(99)00093-0 |
[4] | R. C. Bradley, On the spectral density and asymptotic normality of weakly dependent random fields, J. Theor. Probab., 5 (1992), 355–373. http://doi.org/10.1007/BF01046741 doi: 10.1007/BF01046741 |
[5] | G. H. Cai, Strong laws for weighted sums of NA random variables, Metrika, 68 (2008), 323–331. http://doi.org/10.1007/s00184-007-0160-5 doi: 10.1007/s00184-007-0160-5 |
[6] | P. Y. Chen, S. H. Sung, On the strong convergence for weighted sums of negatively associated random variables, Stat. Probabil. Lett., 92 (2014), 45–52. http://doi.org/10.1016/j.spl.2014.04.028 doi: 10.1016/j.spl.2014.04.028 |
[7] | N. Cheng, C. Lu, J. B. Qi, X. J. Wang, Complete moment convergence for randomly weighted sums of extended negatively dependent random variables with application to semiparametric regression models, Stat. Pap., 63 (2022), 397–419. http://doi.org/10.1007/s00362-021-01244-1 doi: 10.1007/s00362-021-01244-1 |
[8] | Y. S. Chow, On the rate of moment complete convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sinica, 16 (1988), 177–201. |
[9] | P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci., 33 (1947), 25–31. https://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25 |
[10] | H. W. Huang, H. Zou, Y. H. Feng, F. X. Feng, A note on the strong convergence for weighted sums of ${{\rho }^{*}}$-mixing random variables, J. Math. Inequal., 12 (2018), 507–516. https://doi.org/10.7153/jmi-2018-12-37 doi: 10.7153/jmi-2018-12-37 |
[11] | J. J. Lang, L. Cheng, Z. Q. Yu, Y. Wu, X. J. Wang, Complete $f$-moment convergence for randomly weighted sums of extended negatively dependent random variables and its statistical application, Theor. Probab. Appl., 67 (2022), 327–350. https://doi.org/10.4213/tvp5399 doi: 10.4213/tvp5399 |
[12] | W. Li, P. Y. Chen, S. H. Sung, Remark on convergence rate for weighted sums of ${{\rho }^{*}}$-mixing random variables, RACSAM, 111 (2017), 507–513. https://doi.org/10.1007/s13398-016-0314-2 doi: 10.1007/s13398-016-0314-2 |
[13] | Y. J. Peng, X. Q. Zheng, W. Yu, K. X. He, X. J. Wang, Remark on convergence rate for weighted sums of ${{\rho }^{*}}$-mixing random variables, J. Syst. Sci. Complex, 35 (2022), 342–360. https://doi.org/10.1007/s11424-020-0098-5 doi: 10.1007/s11424-020-0098-5 |
[14] | A. Rosalsky, L. V. Thành, A note on the stochastic domination condition and uniform integrability with applications to the strong law of large numbers, Stat. Probabil. Lett., 178 (2021), 109181. https://doi.org/10.1016/j.spl.2021.109181 doi: 10.1016/j.spl.2021.109181 |
[15] | S. H. Sung, On the strong convergence for weighted sums of random variables, Stat. Pap., 52 (2011), 447–454. https://doi.org/10.1007/s00362-009-0241-9 doi: 10.1007/s00362-009-0241-9 |
[16] | S. H. Sung, On the strong convergence for weighted sums of ${{\rho }^{*}}$-mixing random variables, Stat. Pap., 54 (2013), 773–781. https://doi.org/10.1007/s00362-012-0461-2 doi: 10.1007/s00362-012-0461-2 |
[17] | L. V. Thành, On a new concept of stochastic domination and the laws of large numbers, Test, 2022 (2022), 1–33. https://doi.org/10.1007/s11749-022-00827-w doi: 10.1007/s11749-022-00827-w |
[18] | S. Utev, M. Peligrad, Maximal inequalities and an invariance principle for a class of weakly dependent random variables, J. Theor. Probab., 16 (2003), 101–115. https://doi.org/10.1023/A:1022278404634 doi: 10.1023/A:1022278404634 |
[19] | X. J. Wang, X. Deng, F. X. Xia, S. H. Hu, The consistency for the estimators of semiparametric regression model based on weakly dependent errors, Stat. Pap., 58 (2017), 303–318. https://doi.org/10.1007/s00362-015-0698-7 doi: 10.1007/s00362-015-0698-7 |
[20] | W. B. Wu, On the strong convergence of a weighted sum, Stat. Probabil. Lett., 44 (1999), 19–22. https://doi.org/10.1016/S0167-7152(98)00287-9 doi: 10.1016/S0167-7152(98)00287-9 |
[21] | Y. F. Wu, S. H. Sung, A. Volodin, A note on the rates of convergence for weighted sums of ${{\rho }^{*}}$-mixing random variables, Lith. Math. J., 54 (2014), 220–228. https://doi.org/10.1007/s10986-014-9239-7 doi: 10.1007/s10986-014-9239-7 |
[22] | Q. Y. Wu, Probability limit theory for mixing sequences, Beijing: Science Press of China, 2006. |
[23] | Q. Y. Wu, Y. Y. Jiang, Some strong limit theorems for $\tilde{\rho }$-mixing sequences of random variables, Stat. Probabil. Lett., 78 (2008), 1017–1023. https://doi.org/10.1016/j.spl.2007.09.061 doi: 10.1016/j.spl.2007.09.061 |
[24] | X. C. Zhou, C. C. Tan, J. G. Lin, On the strong laws for weighted sums of ${{\rho }^{*}}$-mixing random variables, J. Inequal. Appl., 2011 (2011), 157816. https://doi.org/10.1155/2011/157816 doi: 10.1155/2011/157816 |