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(
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1. Introduction and main result

Existing methods and algorithms appeared in some literatures assume that variables are
independent, but it is not plausible. In many stochastic models and statistical applications, those
variables involved are dependent. Hence, it is important and meaningful to extend the results of
independent variables to dependent cases. One of these dependence structures is weakly dependent
(i.e., ρ∗-mixing or ρ̃-mixing), which has attracted the concern by many researchers.

Definition 1.1. Let {Xn; n ≥ 1} be a sequence of random variables defined on a probability space
(Ω,F , P). For any S ⊂ N= {1, 2, . . .}, define FS = σ (Xi, i ∈ S ). The set L2 (FS ) is the class of all
F -measureable random variables with the finite second moment. For some integer s ≥ 1, denote the
mixing coefficient by

ρ∗ (s) = sup {ρ (FS ,FT ) : S ,T ⊂ N, dist (S ,T ) ≥ s} , (1.1)

where

ρ (FS ,FT ) = sup
{
|EXY − EXEY |
√

Var X ·
√

Var Y
: X ∈ L2 (FS ) ,Y ∈ L2 (FT )

}
. (1.2)
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Noting that the above fact dist (S ,T ) ≥ s denotes dist (S ,T ) = inf {|i − j| : i ∈ S , j ∈ T } ≥ s. Obviously,
0 ≤ ρ∗ (s + 1) ≤ ρ∗ (s) ≤ 1 and ρ∗ (0) = 1. The sequence {Xn; n ≥ 1} is called ρ∗-mixing if there exists
s ∈ N such that ρ∗ (s) < 1. Clearly, if {Xn; n ≥ 1} is a sequence of independent random variables, then
ρ∗ (s) = 0 for all s ≥ 1.
ρ∗-mixing seems similarly to another dependent structure: ρ-mixing, but they are quite different

from each other. ρ∗-mixing is also a wide range class of dependent structures, which was firstly
introduced to the limit theorems by Bradley [4]. From then on, many scholars investigated the limit
theory for ρ∗-mixing random variables, and a number of important applications for ρ∗-mixing have
been established. For more details, we refer to [12, 16, 18, 19, 21, 23, 24] among others.

The concept of complete convergence was firstly given by Hsu and Robbins [9] as follows: A

sequence of random variables {Xn; n ≥ 1} converges completely to a constant λ if
∞∑

n=1
P (|Xn − λ| > ε) <

∞ for all ε > 0. By the Borel-Cantelli lemma, the above result implies that Xn → λ almost surely (a.s.).
Thus, the complete convergence plays a crucial role in investigating the limit theory for summation of
random variables as well as weighted sums.

Chow [8] introduced the following notion of complete moment convergence: Let {Zn; n ≥ 1} be a

sequence of random variables, and an > 0, bn > 0, q > 0. If
∞∑

n=1
anE

(
b−1

n |Zn| − ε
)q

+
< ∞ for all ε ≥ 0,

then the sequence {Zn; n ≥ 1} is called to be the complete q-th moment convergence. It will be shown
that the complete moment convergence is the more general version of the complete convergence, and
is also much stronger than the latter (see Remark 2.1).

According to the related statements of Rosalsky and Thành [14] as well as that of Thành [17], we
recall the definition of stochastic domination as follows.

Definition 1.2. A sequence of random variables {Xn; n ≥ 1} is said to be stochastically dominated
by a random variable X if for all x ≥ 0 and n ≥ 1,

sup
n≥1

P (|Xn| ≥ x) ≤ P (|X| ≥ x) .

The concept of stochastic domination is a slight generalization of identical distribution. It is clearly
seen that stochastic dominance of {Xn; n ≥ 1} by the random variable X implies E|Xn|

p
≤ E|X|p if the

p-th moment of |X| exists, i.e. E|X|p < ∞.
As is known to us all, the weighted sums of random variables are used widely in some important

linear statistics (such as least squares estimators, nonparametric regression function estimators and
jackknife estimates). Based on this respect, many probability statisticians devote to investigate the
probability limiting behaviors for weighted sums of random variables. For example, Bai and Cheng [3],
Cai [5], Chen and Sung [6], Cheng et al. [7], Lang et al. [11], Peng et al. [13], Sung [15,16] and Wu [20]
among others.

Recently, Li et al. [12] extended the corresponding result of Chen and Sung [6] from negatively
associated random variables to ρ∗-mixing cases by a total different method, and obtained the following
theorem.

Theorem A. Let {X, Xn; n ≥ 1} be a sequence of identically distributed ρ∗-mixing random variables

with EXn = 0, and let {ani; 1 ≤ i ≤ n, n ≥ 1} be an array of real constants such that
n∑

i=1
|ani|

α = O (n) for
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some 1 < α ≤ 2. Set bn = n1/α(log n
)1/γ for 0 < γ < α. If E|X|α/

(
log (1 + |X|)

)α/γ−1 < ∞, then

∞∑
n=1

1
n

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εbn

 < ∞ for ∀ε > 0. (1.3)

In addition, Huang et al. [10] proved the following complete α-th moment convergence theorem for
weighted sums of ρ∗-mixing random variables under some moment conditions.

Theorem B. Let {Xn; n ≥ 1} be a sequence of ρ∗-mixing random variables, which is stochastically
dominated by a random variable X, let {ani; 1 ≤ i ≤ n, n ≥ 1} be an array of real constants such that
n∑

i=1
|ani|

α = O (n) for some 0 < α ≤ 2. Set bn = n1/α(log n
)1/γ for some γ > 0. Assume further that

EXn = 0 when 1 < α ≤ 2. If

E|X|α < ∞, for α > γ,

E|X|α log(1 + |X|) < ∞, for α = γ,

E|X|γ < ∞, for α < γ,

(1.4)

then
∞∑

n=1

1
n

E

 1
bn

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε

α

+

< ∞ for ∀ε > 0. (1.5)

It is interesting to find the optimal moment conditions for (1.5). Huang et al. [10] also posed a worth
pondering problem whether the result (1.5) holds for the case α > γ under the almost optimal moment
condition E|X|α/

(
log (1 + |X|)

)α/γ−1 < ∞ ?
Mainly inspired by the related results of Li et al. [12], Chen and Sung [6] and Huang et al. [10], the

authors will further study the convergence rate for weighted sums of ρ∗-mixing random variables
without assumptions of identical distribution. Under the almost optimal moment condition
E|X|α/

(
log (1 + |X|)

)α/γ−1 < ∞ for 0 < γ < α with 1 < α ≤ 2, a version of the complete α-th moment
convergence theorem for weighted sums of ρ∗-mixing random variables is established. The main
result not only improves the corresponding ones of Li et al. [12], Chen and Sung [6], but also partially
settles the open problem posed by Huang et al. [10].

Now, we state the main result as follows. Some important auxiliary lemmas and the proof of the
theorem will be detailed in the next section.

Theorem 1.1. Let {Xn; n ≥ 1} be a sequence of ρ∗-mixing random variables with EXn = 0, which
is stochastically dominated by a random variable X, let {ani; 1 ≤ i ≤ n, n ≥ 1} be an array of real

constants such that
n∑

i=1
|ani|

α = O (n) for some 0 < α ≤ 2. Set bn = n1/α(log n
)1/γ for γ > 0. If

E|X|α/
(
log (1 + |X|)

)α/γ−1 < ∞ for α > γ with 1 < α ≤ 2, then (1.5) holds.
Throughout this paper, let I (A) be the indicator function of the event A and I(A, B) = I(A

⋂
B). The

symbol C always presents a positive constant, which may be different in various places, and an = O (bn)
stands for an ≤ Cbn.

2. Lemmas and proofs

To prove our main result of this paper, we need the following important lemmas.
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Lemma 2.1. (Utev and Peligrad [18]) Let p ≥ 2, {Xn; n ≥ 1} be a sequence of ρ∗-mixing random
variables with EXn = 0 and E|Xn|

p < ∞ for all n ≥ 1. Then there exists a positive constant C depending
only on p, s and ρ∗ (s) such that

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣
p ≤ C

 n∑
i=1

E|Xi|
p +

 n∑
i=1

EX2
i

p/2 . (2.1)

In particular, if p = 2,

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣
2 ≤ C

n∑
i=1

EX2
i . (2.2)

The following one is a basic property for stochastic domination. For the details, one refers to Adler
and Rosalsky [1] and Adler et al. [2], or Wu [22]. In fact, we can remove the constant C in those
of Adler and Rosalsky [1] and Adler et al. [2], or Wu [22], since it was proved in Reference [ [14],
Theorem 2.4] (or [ [17], Corollary 2.3]) that this is indeed equivalent to C = 1.

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically dominated
by a random variable X. For all β > 0 and b > 0, the following statements hold:

E|Xn|
βI (|Xn| ≤ b) ≤

(
E|X|βI (|X| ≤ b) + bβP (|X| > b)

)
, (2.3)

E|Xn|
βI (|Xn| > b) ≤ E|X|βI (|X| > b) . (2.4)

Consequently, E|Xn|
β
≤ E|X|β.

Lemma 2.3. Under the conditions of Theorem 1.1, if E|X|α/
(
log (1 + |X|)

)α/γ−1 < ∞ for 0 < γ < α
with 0 < α ≤ 2, then

∞∑
n=1

1
n

∫ ∞

1

n∑
i=1

P
(
|aniXi| > bnt1/α

)
dt < ∞. (2.5)

Proof. By Definition 1.2, noting that

∞∑
n=1

1
n

∫ ∞

1

n∑
i=1

P
(
|aniXi| > bnt1/α

)
dt ≤

∞∑
n=1

1
n

∫ ∞

1

n∑
i=1

P
(
|aniX| > bnt1/α

)
dt

≤

∞∑
n=1

1
n

∫ ∞

0

n∑
i=1

P
(
|aniX|α

bαn
> t

)
dt

≤

∞∑
n=1

n−1b−αn

n∑
i=1

E|aniX|α. (2.6)

It is easy to show that

∞∑
n=1

n−1b−αn

n∑
i=1

|ani|
αE|X|αI (|X| ≤ bn) ≤ C

∞∑
n=1

b−αn E|X|αI (|X| ≤ bn)

≤ C
∞∑

n=1

b−αn

n∑
k=1

E|X|αI (bk < |X| ≤ bk+1)
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≤ C
∞∑

k=1

E|X|αI (bk < |X| ≤ bk+1)
(
log k

)1−(α/γ)

≤ CE|X|α/
(
log (1 + |X|)

)(α/γ)−1 < ∞, (2.7)

and
∞∑

n=1

n−1b−αn

n∑
i=1

|ani|
αE|X|αI (|X| > bn) ≤ C

∞∑
n=1

b−αn E|X|αI (|X| > bn)

= C
∞∑

n=1

b−αn

∞∑
j=n

E|X|αI
(
b j < |X| ≤ b j+1

)
= C

∞∑
j=1

E|X|αI
(
b j < |X| ≤ b j+1

) j∑
n=1

n−1(log n
)−α/γ

≤ C
∞∑
j=1

(
log j

)1−(α/γ)E|X|αI
(
b j < |X| ≤ b j+1

)
≤ CE|X|α/

(
log (1 + |X|)

)(α/γ)−1 < ∞. (2.8)

Hence, (2.5) holds by (2.6)–(2.8).
Proof of Theorem 1.1. For any given ε > 0, observing that

∞∑
n=1

1
n

E

 1
bn

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε

α

+

=

∞∑
n=1

1
n

∫ ∞

0
P

 1
bn

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε > t1/α

 dt

=

∞∑
n=1

1
n

∫ 1

0
P

 1
bn

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > ε + t1/α

 dt

+

∞∑
n=1

1
n

∫ ∞

1
P

 1
bn

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > ε + t1/α

 dt

≤

∞∑
n=1

1
n

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εbn


+

∞∑
n=1

1
n

∫ ∞

1
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > bnt1/α

 dt

≜ I + J. (2.9)

By Theorem A of Li et al. [12] declared in the first section, we get directly I < ∞. In order to
prove (1.5), it suffices to show that J < ∞.

Without loss of generality, assume that ani ≥ 0. For all t ≥ 1 and 1 ≤ i ≤ n, n ∈ N, define

Yi = aniXiI
(
|aniXi| ≤ bnt1/α

)
.

It is easy to check thatmax
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > bnt1/α

 ⊂
max

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Yi

∣∣∣∣∣∣∣ > bnt1/α

⋃
 n⋃

i=1

(
|aniXi| > bnt1/α

) ,
AIMS Mathematics Volume 8, Issue 1, 622–632.
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which implies

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > bnt1/α

 ≤ P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Yi

∣∣∣∣∣∣∣ > bnt1/α


+P

 n⋃
i=1

(
|aniXi| > bnt1/α

) . (2.10)

To prove J < ∞, we need only to show that

J1 =

∞∑
n=1

1
n

∫ ∞

1
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Yi

∣∣∣∣∣∣∣ > bnt1/α

 dt < ∞,

J2 =

∞∑
n=1

1
n

∫ ∞

1
P

 n⋃
i=1

(
|aniXi| > bnt1/α

) dt < ∞.

Since

P

 n⋃
i=1

(
|aniXi| > bnt1/α

) ≤ n∑
i=1

P
(
|aniXi| > bnt1/α

)
,

it follows from Lemma 2.3 that

J2 ≤

∞∑
n=1

1
n

∫ ∞

1

n∑
i=1

P
(
|aniXi| > bnt1/α

)
dt < ∞.

Next, we prove that

sup
t≥1

1
bnt1/αmax

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EYi

∣∣∣∣∣∣∣→ 0. (2.11)

By EXn = 0 and (2.4) of Lemma 2.2, it follows that

sup
t≥1

1
bnt1/αmax

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EYi

∣∣∣∣∣∣∣ = sup
t≥1

1
bnt1/αmax

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EaniXiI
(
|aniXi| ≤ bnt1/α

)∣∣∣∣∣∣∣
= sup

t≥1

1
bnt1/αmax

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EaniXiI
(
|aniXi| > bnt1/α

)∣∣∣∣∣∣∣
≤ Csup

t≥1

1
bnt1/α

n∑
i=1

E |aniX| I
(
|aniX| > bnt1/α

)
.

Observe that,

E |aniX| I
(
|aniX| > bnt1/α

)
= E |aniX| I

(
|aniX| > bnt1/α, |X| ≤ bn

)
+E |aniX| I

(
|aniX| > bnt1/α, |X| > bn

)
. (2.12)

For 0 < γ < α and 1 < α ≤ 2, it is clearly shown that
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E |aniX| I
(
|aniX| > bnt1/α, |X| ≤ bn

)
≤ Cb1−α

n t(1/α)−1|ani|
αE|X|αI (|X| ≤ bn)

≤ Cb1−α
n t(1/α)−1|ani|

αE
 |X|α(

log (1 + |X|)
)α/γ−1

(
log (1 + |X|)

)α/γ−1
 I (|X| ≤ bn)

≤ Ct(1/α)−1n−1+(1/α)
|ani|

α(log n)(1/γ)−1, (2.13)

and

E |aniX| I
(
|aniX| > bnt1/α, |X| > bn

)
≤ C |ani| E |X| I (|X| > bn)

≤ Cb1−α
n

(
log (1 + bn)

)(α/γ)−1
|ani|

≤ Cn−1+(1/α)(log n)−1+(1/γ)
|ani| . (2.14)

Thus,

sup
t≥1

1
bnt1/α

n∑
i=1

E |aniX| I
(
|aniX| > bnt1/α, |X| ≤ bn

)
≤ Cb−1

n n−1+(1/α)(log n)(1/γ)−1
n∑

i=1

|ani|
α

≤ C(log n)−1
→ 0, (2.15)

and

sup
t≥1

1
bnt1/α

n∑
i=1

E |aniX| I
(
|aniX| > bnt1/α, |X| > bn

)
≤ Cb−1

n n−1+(1/α)(log n)−1+(1/γ)
n∑

i=1

|ani|

≤ C(log n)−1
→ 0. (2.16)

Then, (2.11) holds by the argumentation of (2.12)–(2.16).

Hence, for n sufficiently large, we have that max
1≤ j≤n

∣∣∣∣∣∣ j∑
i=1

EYi

∣∣∣∣∣∣ ≤ bnt1/α

2 holds uniformly for all t ≥ 1.

Therefore,

J1 =

∞∑
n=1

1
n

∫ ∞

1
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yi − EYi)

∣∣∣∣∣∣∣ > bnt1/α

2

 dt. (2.17)

By the Markov’s inequality, (2.2) of Lemma 2.1 and (2.3) of Lemma 2.2, we get that

J1 ≤ C
∞∑

n=1

1
n

∫ ∞

1

1
b2

nt2/αE

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yi − EYi)

∣∣∣∣∣∣∣
2 dt

≤ C
∞∑

n=1

1
n

∫ ∞

1

1
b2

nt2/α

 n∑
i=1

E|Yi − EYi|
2

 dt

≤ C
∞∑

n=1

1
n

∫ ∞

1

1
b2

nt2/α

 n∑
i=1

E|aniXi|
2I

(
|aniXi| ≤ bnt1/α

) dt

≤ C
∞∑

n=1

1
n

∫ ∞

1

1
b2

nt2/α

 n∑
i=1

E|aniX|2I
(
|aniX| ≤ bnt1/α

) dt
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+C
∞∑

n=1

1
n

∫ ∞

1

n∑
i=1

P
(
|aniX| > bnt1/α

)
dt

≤ C
∞∑

n=1

1
n

∫ ∞

1

1
b2

nt2/α

 n∑
i=1

E|aniX|2I (|aniX| ≤ bn)

 dt

+C
∞∑

n=1

1
n

∫ ∞

1

1
b2

nt2/α

 n∑
i=1

E|aniX|2I
(
bn < |aniX| ≤ bnt1/α

) dt

+C
∞∑

n=1

1
n

∫ ∞

1

n∑
i=1

P
(
|aniX| > bnt1/α

)
dt

= J11 + J12 + J13. (2.18)

Based on the formula (2.2) of Lemma 2.2 in Li et al. [10], we get that

J11 =

∞∑
n=1

1
n

∫ ∞

1

1
b2

nt2/α

 n∑
i=1

E|aniX|2I (|aniX| ≤ bn)

 dt

≤

∞∑
n=1

1
n

1
bαn

 n∑
i=1

E|aniX|αI (|aniX| ≤ bn)

 < ∞. (2.19)

Denoting t = xα, by (2.3) of Lemma 2.2, the Markov’s inequality and Lemma 2.3, we also get that

J12 =

∞∑
n=1

1
n

∫ ∞

1

1
b2

nt2/α

 n∑
i=1

E|aniX|2I
(
bn < |aniX| ≤ bnt1/α

) dt

≤ C
∞∑

n=1

1
nb2

n

∫ ∞

1
xα−3

n∑
i=1

E|aniX|2I (bn < |aniX| ≤ bnx)dx

≤ C
∞∑

n=1

1
nb2

n

∞∑
m=1

∫ m+1

m
xα−3

n∑
i=1

E|aniX|2I (bn < |aniX| ≤ bnx)dx

≤ C
∞∑

n=1

1
nb2

n

∞∑
m=1

mα−3
n∑

i=1

E|aniX|2I (bn < |aniX| ≤ bn (m + 1))

= C
∞∑

n=1

1
nb2

n

n∑
i=1

∞∑
m=1

m∑
s=1

mα−3E|aniX|2I (bns < |aniX| ≤ bn (s + 1))

= C
∞∑

n=1

1
nb2

n

n∑
i=1

∞∑
s=1

E|aniX|2I (bns < |aniX| ≤ bn (s + 1))
∞∑

m=s

mα−3

≤ C
∞∑

n=1

1
nb2

n

n∑
i=1

∞∑
s=1

E|aniX|2I (bns < |aniX| ≤ bn (s + 1)) sα−2

≤ C
∞∑

n=1

1
nbαn

n∑
i=1

E|aniX|αI (|aniX| > bn)

≤ CE|X|α/
(
log (1 + |X|)

)α/γ−1 < ∞. (2.20)
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Analogous to the argumentation of Lemma 2.3, it is easy to show that

J13 =

∞∑
n=1

1
n

∫ ∞

1

n∑
i=1

P
(
|aniX| > bnt1/α

)
dt ≤ CE|X|α/

(
log (1 + |X|)

)α/γ−1 < ∞. (2.21)

Hence, the desired result J1 < ∞ holds by the above statements. The proof of Theorem 1.1 is
completed.

Remark 2.1. Under the conditions of Theorem 1.1, noting that

∞ >

∞∑
n=1

1
n

E

 1
bn

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε

α

+

=

∞∑
n=1

1
n

∫ ∞

0
P

 1
bn

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε > t1/α

 dt

≥ C
∞∑

n=1

1
n

∫ εα

0
P

 1
bn

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > ε + t1/α

dt

≥ C
∞∑

n=1

1
n

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > 2εbn

 for ∀ε > 0. (2.22)

Since ε > 0 is arbitrary, it follows from (2.22) that the complete moment convergence is much stronger
than the complete convergence. Compared with the corresponding results of Li et al. [12], Chen and
Sung [6], it is worth pointing out that Theorem 1.1 of this paper is an extension and improvement of
those of Li et al. [12], Chen and Sung [6] under the same moment condition. In addition, the main result
partially settles the open problem posed by Huang et al. [10] for the case 0 < γ < α with 1 < α ≤ 2.

3. Conclusions

In this work, we consider the problem of complete moment convergence for weighted sums of
weakly dependent (or ρ∗-mixing) random variables. The main results of this paper are presented in
the form of the main theorem and a remark as well as Lemma 2.3, which plays a vital role to prove
the main theorem. The presented main theorem improves and generalizes the corresponding complete
convergence results of Li et al. [12] and Chen and Sung [6].
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