This article is concerned with the minimal wave speed of traveling wave solutions for an integrodifference equation of higher order. Besides the operator may be nonmonotone, the kernel functions may be not Lebesgue measurable and integrable such that the equation has lower regularity. By constructing a proper set of potential wave profiles, we obtain the existence of smooth traveling wave solutions when the wave speed is larger than a threshold. Here, the profile set is obtained by giving a pair of upper and lower solutions. When the wave speed is the threshold, the existence of nontrivial traveling wave solutions is proved by passing to a limit function. Moreover, we obtain the nonexistence of nontrivial traveling wave solutions when the wave speed is smaller than the threshold.
Citation: Fuzhen Wu. Traveling wave solutions for an integrodifference equation of higher order[J]. AIMS Mathematics, 2022, 7(9): 16482-16497. doi: 10.3934/math.2022902
This article is concerned with the minimal wave speed of traveling wave solutions for an integrodifference equation of higher order. Besides the operator may be nonmonotone, the kernel functions may be not Lebesgue measurable and integrable such that the equation has lower regularity. By constructing a proper set of potential wave profiles, we obtain the existence of smooth traveling wave solutions when the wave speed is larger than a threshold. Here, the profile set is obtained by giving a pair of upper and lower solutions. When the wave speed is the threshold, the existence of nontrivial traveling wave solutions is proved by passing to a limit function. Moreover, we obtain the nonexistence of nontrivial traveling wave solutions when the wave speed is smaller than the threshold.
[1] | A. R. A. Anderson, B. D. Sleeman, Wave front propagation and its failure in coupled systems of discrete bistable cells modeled by FitzHugh-Nagumo dynamics, Int. J. Bifurcat. Chaos, 5 (1995), 63–74. https://doi.org/10.1142/S0218127495000053 doi: 10.1142/S0218127495000053 |
[2] | A. Arbi, Novel traveling waves solutions for nonlinear delayed dynamical neural networks with leakage term, Chaos Soliton. Fract., 152 (2021), 111436. http://doi.org/10.1016/j.chaos.2021.111436 doi: 10.1016/j.chaos.2021.111436 |
[3] | Y. Guo, S. S. Ge, A. Arbi, Stability of traveling waves solutions for nonlinear cellular neural networks with distributed delays, J. Syst. Sci. Complex, 35 (2022), 18–31. http://doi.org/10.1007/s11424-021-0180-7 doi: 10.1007/s11424-021-0180-7 |
[4] | S.-B. Hsu, X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776–789. http://doi.org/10.1137/070703016 |
[5] | J. P. Keener, Propagation and its failure to coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556–572. http://doi.org/10.1137/0147038 doi: 10.1137/0147038 |
[6] | V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Dordrecht: Springer, 1993. https://doi.org/10.1007/978-94-017-1703-8 |
[7] | M. Kot, Discrete-time travelling waves: Ecological examples, J. Math. Biol., 30 (1992), 413–436. http://doi.org/10.1007/BF00173295 |
[8] | B. Li, M. A. Lewis, H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323–338. http://doi.org/10.1007/s00285-008-0175-1 doi: 10.1007/s00285-008-0175-1 |
[9] | B. Li, Traveling wave solutions in a plant population model with a seed bank, J. Math. Biol., 65 (2012), 855–873. http://doi.org/10.1007/s00285-011-0481-x doi: 10.1007/s00285-011-0481-x |
[10] | G. Lin, Travelling wave solutions for integro-difference systems, J. Differ. Equations, 258 (2015), 2908–2940. http://doi.org/10.1016/j.jde.2014.12.030 doi: 10.1016/j.jde.2014.12.030 |
[11] | G. Lin, T. Su, Asymptotic speeds of spread and traveling wave solutions of a second order integrodifference equation without monotonicity, J. Differ. Equ. Appl., 22 (2016), 542–557. http://doi.org/10.1080/10236198.2015.1112383 doi: 10.1080/10236198.2015.1112383 |
[12] | G. Lin, S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterra competition-diffusion models with distributed delays, J. Dyn. Differ. Equ., 26 (2014), 583–605. http://doi.org/10.1007/s10884-014-9355-4 doi: 10.1007/s10884-014-9355-4 |
[13] | R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci., 93 (1989), 269–295. http://doi.org/10.1016/0025-5564(89)90026-6 doi: 10.1016/0025-5564(89)90026-6 |
[14] | R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory, Math. Biosci., 107 (1991), 255–287. http://doi.org/10.1016/0025-5564(89)90027-8 doi: 10.1016/0025-5564(89)90027-8 |
[15] | F. Lutscher, Integrodifference equations in spatial ecology, Cham: Springer, 2019. http://doi.org/10.1007/978-3-030-29294-2 |
[16] | S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differ. Equations, 171 (2001), 294–314. http://doi.org/10.1006/jdeq.2000.3846 doi: 10.1006/jdeq.2000.3846 |
[17] | I. $\ddot{O}$zt$\ddot{u}$rk, F. Bozkurt, F. Gurcan, Stability analysis of a mathematical model in a microcosm with piecewise constant arguments, Math. Biosci., 240 (2012), 85–91. http://doi.org/10.1016/j.mbs.2012.08.003 doi: 10.1016/j.mbs.2012.08.003 |
[18] | S. Pan, G. Lin, Traveling wave solutions in an integrodifference equation with weak compactness, J. Nonl. Mod. Anal., 3 (2021), 465–475. http://doi.org/10.12150/jnma.2021.465 doi: 10.12150/jnma.2021.465 |
[19] | L.-Y. Pang, S.-L. Wu, Propagation dynamics for lattice differential equations in a time-periodic shifting habitat, Z. Angew. Math. Phys., 72 (2021), 93. http://doi.org/10.1007/s00033-021-01522-w doi: 10.1007/s00033-021-01522-w |
[20] | Y. Pan, New methods for the existence and uniqueness of traveling waves of non-monotone integro-difference equations with applications, J. Differ. Equations, 268 (2020), 6319–6349. http://doi.org/10.1016/j.jde.2019.11.030 doi: 10.1016/j.jde.2019.11.030 |
[21] | H. Wang, C. Castillo-Chavez, Spreading speeds and traveling waves for non-cooperative integro-difference systems, Discrete Contin. Dyn. Syst. B, 17 (2012), 2243–2266. http://doi.org/10.3934/dcdsb.2012.17.2243 doi: 10.3934/dcdsb.2012.17.2243 |
[22] | Z. C. Wang, W. T. Li, S. Ruan, Traveling wave fronts of reaction-diffusion systems with spatio-temporal delays, J. Differ. Equations, 222 (2006), 185–232. http://doi.org/10.1016/j.jde.2005.08.010 doi: 10.1016/j.jde.2005.08.010 |
[23] | H. F. Weinberger, Long-time behavior of a class of biological model, SIAM J. Math. Anal., 13 (1982), 353–396. http://doi.org/10.1137/0513028 |
[24] | J. Wu, X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651–687. http://doi.org/10.1023/A:1016690424892 doi: 10.1023/A:1016690424892 |
[25] | Z.-X. Yu, R. Yuan, C.-H. Hsu, Q. Jiang, Traveling waves for nonlinear cellular neural networks with distributed delays, J. Differ. Equations, 251 (2011), 630–650. http://doi.org/10.1016/j.jde.2011.05.008 doi: 10.1016/j.jde.2011.05.008 |
[26] | R. Zhang, J. Wang, S. Liu, Traveling wave solutions for a class of discrete diffusive SIR epidemic model, J. Nonlinear Sci., 31 (2021), 10. http://doi.org/10.1007/s00332-020-09656-3 doi: 10.1007/s00332-020-09656-3 |
[27] | J. Zhou, L. Song, J. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equations, 268 (2020), 4491–4524. http://doi.org/10.1016/j.jde.2019.10.034 doi: 10.1016/j.jde.2019.10.034 |