For a Jordan curve $ \Gamma $ in the complex plane, its constant distance boundary $ \Gamma_ \lambda $ is an inflated version of $ \Gamma $. A flatness condition, $ (1/2, r_0) $-chordal property, guarantees that $ \Gamma_ \lambda $ is a Jordan curve when $ \lambda $ is not too large. We prove that $ \Gamma_ \lambda $ converges to $ \Gamma $, as $ \lambda $ approaching to $ 0 $, in the sense of Hausdorff distance if $ \Gamma $ has the $ (1/2, r_0) $-chordal property.
Citation: Feifei Qu, Xin Wei. Limit behaviour of constant distance boundaries of Jordan curves[J]. AIMS Mathematics, 2022, 7(6): 11311-11319. doi: 10.3934/math.2022631
For a Jordan curve $ \Gamma $ in the complex plane, its constant distance boundary $ \Gamma_ \lambda $ is an inflated version of $ \Gamma $. A flatness condition, $ (1/2, r_0) $-chordal property, guarantees that $ \Gamma_ \lambda $ is a Jordan curve when $ \lambda $ is not too large. We prove that $ \Gamma_ \lambda $ converges to $ \Gamma $, as $ \lambda $ approaching to $ 0 $, in the sense of Hausdorff distance if $ \Gamma $ has the $ (1/2, r_0) $-chordal property.
[1] | A. Blokh, M. Misiurewiczch, L. Oversteegen, Sets of constant distance from a compact set in 2-manifolds with a geodesic metric, Proc. Amer. Math. Soc., 137 (2009), 733–743. https://doi.org/10.1090/S0002-9939-08-09502-6 doi: 10.1090/S0002-9939-08-09502-6 |
[2] | M. Brown, Sets of constant distance from a planar set, Michigan Math. J., 19 (1972), 321–323. https://doi.org/10.1307/mmj/1029000941 doi: 10.1307/mmj/1029000941 |
[3] | S. Ferry, When $\epsilon$-Boundaries are Manifold, Fund. Math., 90 (1976), 199–210. |
[4] | H. Federer, Geometric measure theory, New York: Springer-Verlag, 1996. |
[5] | J. Rataj, S. Winter, On volume and surface area of parallel sets, Indiana U. Math. J., 59 (2010), 1661–1685. |
[6] | J. Sanchez-Reyes, L. Fernandez-Jambrina, On the reach and the smoothness class of pipes and offsets: A survey, AIMS Math., 7 (2022), 7742–7758. https://doi.org/10.3934/math.2022435 doi: 10.3934/math.2022435 |
[7] | V. Vellis, J. Wu, Sets of constant distance from a Jordan curve, Ann. Acad. Sci. Fenn. M., 39 (2014), 211–230. https://doi.org/10.5186/aasfm.2014.3905 doi: 10.5186/aasfm.2014.3905 |